Skip to main content

Electrophysiological Approaches in the Study of the Influence of Childhood Poverty on Cognition

  • Chapter
  • First Online:
Neuroscience and Social Science

Abstract

The influence of adverse environmental conditions on the organization and reorganization of the brain structure and function involves distinct neural systems at different levels of organization. Electroencephalographic (EEG) measures provide precise evidence on the temporal sequence in which relevant cognitive processes occur. Here, we offer a systematic review of EEG studies on the influence of childhood poverty on cognitive development. The paradigms used focused primarily on correlates of inhibitory control, selective attention, and unrelated task-event activity. Eighteen studies reported differences related to socioeconomic disparities, including (a) discrepancies in neural markers of interference control and early auditory sensory processing and (b) delays in the maturation of brain oscillations in frontal regions. Overall, EEG techniques appear to have predictive power over cognitive and academic performance of children. Therefore, EEG markers may be useful to evaluate the efficacy of interventions aimed to enhance cognitive development in children facing unfavorable social conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our systematic review is based on the PRISMA-P standard protocol [113] to examine the association between poverty indicators and EEG activity in developmental cognitive studies. The search criteria contemplated: (a) articles published in English without restrictions on the range of the publication dates; (b) studies with an age range between birth and adolescence; and (c) experimental research reporting factors that were related to childhood poverty, EEG measures, and their relationship with cognitive development. Studies were identified by searching electronic databases and inspecting reference lists of articles. This search was applied to the National Library of Medicine’s MEDLINE and EBSCO databases, considering the following terms: “SES,” “income,” “education,” “occupation,” “poverty,” “social vulnerability,” “ERP,” “EEG,” “children,” “preschool,” “kindergarten,” and “school.” Three reviewers selected the studies, and any disagreements were solved by consensus. We selected those articles in which the primary purpose was to measure the impact of poverty-related factors on brain and cognitive functioning. Conversely, the ones that were aimed mainly at addressing factors not necessarily associated to poverty (e.g., parental mental health or air pollution), or that were focused on extreme deprivation of these aspects (e.g., undernutrition, maltreatment), were not selected, even though they showed a certain relevance in assessing the impact of childhood poverty. The information that was extracted from each study included (1) sociodemographic characteristics of participants; (2) poverty measures (type, method of measurement, quantity and quality of considered factors); and (3) EEG and cognitive paradigms (amplitude, latency, power spectra of activity through scalp sites, accuracy, and reaction time of behavioral performances).

References

  1. Allan NP, Hume LE, Allan DM, Farrington AL, Lonigan CJ. Relations between inhibitory control and the development of academic skills in preschool and kindergarten: a meta-analysis. Dev Psychol. 2014;50(10):2368–79. https://doi.org/10.1037/a0037493.

    Article  PubMed  Google Scholar 

  2. Bull R, Lee K. Executive functioning and mathematics achievement. Child Dev Perspect. 2014;8(1):36–41. https://doi.org/10.1111/cdep.12059.

    Article  Google Scholar 

  3. Shonkoff JP. Leveraging the biology of adversity to address the roots of disparities in health and development. Proc Natl Acad Sci U S A. 2012;109(Suppl 2):17302–7. Available from http://www.pnas.org/content/109/Supplement_2/17302.abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Blair C, Raver CC. Poverty, stress, and brain development: new directions for prevention and intervention. Acad Pediatr. 2016;16(3):S30–6. Available from http://www.sciencedirect.com/science/article/pii/S1876285916000267.

    Article  PubMed  Google Scholar 

  5. D’Angiulli A, Van Roon PM, Weinberg J, Oberlander TF, Grunau RE, Hertzman C, et al. Frontal EEG/ERP correlates of attentional processes, cortisol and motivational states in adolescents from lower and higher socioeconomic status. Front Hum Neurosci. 2012;6:306. Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3500742&tool=pmcentrez&rendertype=abstract.

    PubMed  PubMed Central  Google Scholar 

  6. Gianaros PJ, Hackman D. Contributions of neuroscience to the study of socioeconomic health disparities. Psychosom Med. 2013;75(7):610–5. Available from http://europepmc.org/articles/PMC3816088.

    Article  PubMed  Google Scholar 

  7. Hackman DA, Farah MJ, Meaney MJ. Socioeconomic status and the brain: mechanistic insights from human and animal research. Nat Rev Neurosci. 2010;11(9):651–9. Available from http://www.ncbi.nlm.nih.gov/pubmed/20725096.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hackman DA, Gallop R, Evans GW, Farah MJ. Socioeconomic status and executive function: developmental trajectories and mediation. Dev Sci. 2015;18(5):686–702. https://doi.org/10.1111/desc.12246.

    Article  PubMed  Google Scholar 

  9. Hackman DA, Farah MJ. Socioeconomic status and the developing brain. Trends Cogn Sci. 2009;13(2):65–73. Available from http://www.sciencedirect.com/science/article/pii/S1364661308002635.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lipina SJ, Segretin MS. Strengths and weakness of neuroscientific investigations of childhood poverty: future directions. Front Hum Neurosci. 2015;9(53):1–5. Available from http://www.frontiersin.org/human_neuroscience/10.3389/fnhum.2015.00053/abstract.

    Google Scholar 

  11. Lipina SJ, Colombo JA. Poverty and brain development during childhood: an approach from cognitive psychology and neuroscience. Washington: American Psychological Association; 2009. 172 p. Available from http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=psyc6&NEWS=N&AN=2009-08043-000.

  12. Lipina SJ, Posner MI. The impact of poverty on the development of brain networks. Front Hum Neurosci. 2012;6:1–12. Available from http://journal.frontiersin.org/article/10.3389/fnhum.2012.00238/abstract.

    Article  Google Scholar 

  13. Lipina SJ. Biological and sociocultural determinants of neurocognitive development: central aspects of the current scientific agenda. In: Vaticana LE, editor. Bread and brain, education and poverty. Vatican City: Pontifical Academy of Sciences; 2014. p. 1–30.

    Google Scholar 

  14. Moffitt TE, Arseneault L, Belsky D, Dickson N, Hancox RJ, Harrington H, et al. A gradient of childhood self-control predicts health, wealth, and public safety. Proc Natl Acad Sci. 2011;108(7):2693–8. Available from http://europepmc.org/articles/PMC3041102.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Pavlakis AE, Noble K, Pavlakis SG, Ali N, Frank Y. Brain imaging and electrophysiology biomarkers: is there a role in poverty and education outcome research? Pediatr Neurol. 2015;52(4):383–8. https://doi.org/10.1016/j.pediatrneurol.2014.11.005.

    Article  PubMed  Google Scholar 

  16. Raizada RDS, Kishiyama MM. Effects of socioeconomic status on brain development, and how cognitive neuroscience may contribute to levelling the playing field. Front Hum Neurosci. 2010;4:3. Available from http://europepmc.org/articles/PMC2820392.

    PubMed  PubMed Central  Google Scholar 

  17. Stevens C, Lauinger B, Neville H. Differences in the neural mechanisms of selective attention in children from different socioeconomic backgrounds: an event-related brain potential study. Dev Sci. 2009;12(4):634–46. https://doi.org/10.1111/j.1467-7687.2009.00807.x.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ursache A, Noble KG. Neurocognitive development in socioeconomic context: multiple mechanisms and implications for measuring socioeconomic status. Psychophysiology. 2016;53(1):71–82. https://doi.org/10.1111/psyp.12547.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bradley RH, Corwyn RF. Socioeconomic status and child development. Annu Rev Psychol. 2002;53(1):371–99. https://doi.org/10.1146/annurev.psych.53.100901.135233.

    Article  PubMed  Google Scholar 

  20. Evans GW. The environment of childhood poverty. Am Psychol. 2004;59(2):77–92. https://doi.org/10.1037/0003-066X.59.2.77.

    Article  PubMed  Google Scholar 

  21. Gassman-Pines A, Yoshikawa H. The effects of antipoverty programs on children’s cumulative level of poverty-related risk. Dev Psychol. 2006;42(6):981–99. https://doi.org/10.1037/0012-1649.42.6.981.

    Article  PubMed  Google Scholar 

  22. Rhoades BL, Greenberg MT, Lanza ST, Blair C. Demographic and familial predictors of early executive function development: contribution of a person-centered perspective. J Exp Child Psychol. 2011;108(3):638–62. Available from http://www.sciencedirect.com/science/article/pii/S0022096510001633.

    Article  PubMed  Google Scholar 

  23. Sarsour K, Sheridan M, Jutte D, Nuru-Jeter A, Hinshaw S, Boyce WT. Family socioeconomic status and child executive functions: the roles of language, home environment, and single parenthood. J Int Neuropsychol Soc. 2011;17(1):120–32. Available from http://journals.cambridge.org/article_S1355617710001335.

    Article  PubMed  Google Scholar 

  24. Segretin MS, Lipina SJ, Hermida MJ, Sheffield TD, Nelson JM, Espy KA, et al. Predictors of cognitive enhancement after training in preschoolers from diverse socioeconomic backgrounds. Front Psychol. 2014;5:205. Available from http://europepmc.org/articles/PMC3952047.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Walker SP, Wachs TD, Meeks Gardner J, Lozoff B, Wasserman GA, Pollitt E, et al. Child development: risk factors for adverse outcomes in developing countries. Lancet. 2007;369(9556):145–57. Available from http://www.sciencedirect.com/science/article/pii/S0140673607600762.

    Article  PubMed  Google Scholar 

  26. Evans GW, Li D, Whipple SS. Cumulative risk and child development. Psychol Bull. 2013;139(6):1342–96. https://doi.org/10.1037/a0031808.

    Article  PubMed  Google Scholar 

  27. Cadima J, McWilliam RA, Leal T. Environmental risk factors and children’s literacy skills during the transition to elementary school. Int J Behav Dev. 2010;34(1):24–33. Available from https://www.scopus.com/inward/record.uri?eid=2-s2.0-74049089341&partnerID=40&md5=1c7587681e58f468561e7669efa506c0.

    Article  Google Scholar 

  28. Lipina S, Segretin S, Hermida J, Prats L, Fracchia C, Camelo JL, et al. Linking childhood poverty and cognition: environmental mediators of non-verbal executive control in an argentine sample. Dev Sci. 2013;16(5):697–707. https://doi.org/10.1111/desc.12080.

    Article  PubMed  Google Scholar 

  29. Belsky J, Bakermans-Kranenburg MJ, van IJzendoorn MH. For better and for worse differential susceptibility to environmental influences. Curr Dir Psychol Sci. 2007;16(6):300–4. Available from http://www.ingentaconnect.com/content/bpl/cdir/2007/00000016/00000006/art00003.

    Article  Google Scholar 

  30. Najman JM, Aird R, Bor W, O’Callaghan M, Williams GM, Shuttlewood GJ. The generational transmission of socioeconomic inequalities in child cognitive development and emotional health. Soc Sci Med. 2004;58(6):1147–58. Available from http://www.sciencedirect.com/science/article/pii/S0277953603002867.

    Article  PubMed  Google Scholar 

  31. Sheridan MA, KA ML. Dimensions of early experience and neural development: deprivation and threat. Trends Cogn Sci. 2014;18(11):580–5. Available from http://www.ncbi.nlm.nih.gov/pubmed/25305194.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stanton-Chapman TL, Chapman DA, Kaiser AP, Hancock TB. Cumulative risk and low-income children’s language development. Top Early Child Spec Educ. 2004;24(4):227–37. Available from http://tec.sagepub.com/content/24/4/227.abstract.

    Article  Google Scholar 

  33. Duncan GJ, Magnuson K. Socioeconomic status and cognitive functioning: moving from correlation to causation. Wiley Interdiscip Rev Cogn Sci. 2012;3(3):377–86. https://doi.org/10.1002/wcs.1176.

    Article  PubMed  Google Scholar 

  34. Lipina SJ. Critical considerations about the use of poverty measures in the study of cognitive development. Int J Psychol. 2017;52(3):241–50. https://doi.org/10.1002/ijop.12282.

    Article  PubMed  Google Scholar 

  35. Raizada RDS, Richards TL, Meltzoff A, Kuhl PK. Socioeconomic status predicts hemispheric specialisation of the left inferior frontal gyrus in young children. NeuroImage. 2008;40(3):1392–401. Available from http://www.sciencedirect.com/science/article/pii/S1053811908000475.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Noble KG, Wolmetz ME, Ochs LG, Farah MJ, McCandliss BD. Brain-behavior relationships in reading acquisition are modulated by socioeconomic factors. Dev Sci. 2006;9(6):642–54. https://doi.org/10.1111/j.1467-7687.2006.00542.x.

    Article  PubMed  Google Scholar 

  37. Noble KG, Houston SM, Brito NH, Bartsch H, Kan E, Kuperman JM, et al. Family income, parental education and brain structure in children and adolescents. Nat Neurosci. 2015;18(5):773–8. Available from http://europepmc.org/articles/PMC4414816.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Avants BB, Hackman DA, Betancourt LM, Lawson GM, Hurt H, Farah MJ. Relation of Childhood Home Environment to Cortical Thickness in Late Adolescence: Specificity of Experience and Timing. PLoS One. 2015;10(10):e0138217. https://doi.org/10.1371/journal.pone.0138217.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hair NL, Hanson JL, Wolfe BL, Pollak SD. Association of child poverty, brain development, and academic achievement. JAMA Pediatr. 2015;169(9):822–9. Available from http://archpedi.jamanetwork.com/article.aspx?doi=10.1001/jamapediatrics.2015.1475.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cohen MX. Analyzing neural time series data: theory and practice. London: MIT Press; 2014. 600 p. Available from https://mitpress.mit.edu/books/analyzing-neural-time-series-data.

    Google Scholar 

  41. Kishiyama MM, Boyce WT, Jimenez AM, Perry LM, Knight RT. Socioeconomic disparities affect prefrontal function in children. J Cogn Neurosci. 2009;21(6):1106–15. Available from http://www.ncbi.nlm.nih.gov/pubmed/18752394.

    Article  PubMed  Google Scholar 

  42. Skoe E, Krizman J, Kraus N. The impoverished brain: disparities in maternal education affect the neural response to sound. J Neurosci. 2013;33(44):17221–31. Available from http://www.ncbi.nlm.nih.gov/pubmed/24174656

    Article  PubMed  Google Scholar 

  43. Stevens C, Paulsen D, Yasen A, Neville H. Atypical auditory refractory periods in children from lower socio-economic status backgrounds: ERP evidence for a role of selective attention. Int J Psychophysiol. 2015;95(2):156–66. https://doi.org/10.1016/j.ijpsycho.2014.06.017.

    Article  PubMed  Google Scholar 

  44. Ruberry EJ, Lengua LJ, Crocker LH, Bruce J, Upshaw MB, Sommerville JA. Income, neural executive processes, and preschool children’s executive control. Dev Psychopathol. 2017;29(1):143–54. Available from http://www.journals.cambridge.org/abstract_S095457941600002X.

    Article  PubMed  Google Scholar 

  45. Harmony T, Marosi E, Diaz de Leon AE, Becker J, Fernandez T. Effect of sex, psychosocial disadvantages and biological risk factors on EEG maturation. Electroencephalogr Clin Neurophysiol. 1990;75(6):482–91. Available from http://www.sciencedirect.com/science/article/pii/0013469490901357.

    Article  PubMed  Google Scholar 

  46. Brito NH, Fifer WP, Myers MM, Elliott AJ, Noble KG. Associations among family socioeconomic status, EEG power at birth, and cognitive skills during infancy. Dev Cogn Neurosci. 2016;19:144–51. Available from http://www.sciencedirect.com/science/article/pii/S1878929315301201.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tomalski P, Moore DG, Ribeiro H, Axelsson EL, Murphy E, Karmiloff-Smith A, et al. Socioeconomic status and functional brain development – associations in early infancy. Dev Sci. 2013;16(5):676–87. https://doi.org/10.1111/desc.12079.

    Article  PubMed  Google Scholar 

  48. Conejero Á, Guerra S, Abundis-Gutiérrez A, Rueda MR. Frontal theta activation associated with error detection in toddlers: influence of familial socioeconomic status. Dev Sci. 2016. https://doi.org/10.1111/desc.12494.

    Google Scholar 

  49. D’Angiulli A, Herdman A, Stapells D, Hertzman C. Children’s Event-related potentials of auditory selective attention vary with their socioeconomic status. Neuropsychology. 2008;22(3):293. https://doi.org/10.1037/0894-4105.22.3.293.

    Article  PubMed  Google Scholar 

  50. D’Angiulli A, Weinberg J, Grunau R, Hertzman C, Grebenkov P. Towards a cognitive science of social inequality: children’s attention-related ERPs and salivary cortisol vary with their socioeconomic status. In: Proceedings of the 30th cognitive science society annual meeting. Washington, DC: Cognitive Science Society; 2008. p. 211–216.

    Google Scholar 

  51. Isbell E, Wray AH, Neville HJ. Individual differences in neural mechanisms of selective auditory attention in preschoolers from lower socioeconomic status backgrounds: an event-related potentials study. Dev Sci. 2016;19(6):865–80. https://doi.org/10.1111/desc.12334.

    Article  PubMed  Google Scholar 

  52. Neville HJ, Stevens C, Pakulak E, Bell TA, Fanning J, Klein S, et al. Family-based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers. Proc Natl Acad Sci U S A. 2013;110(29):12138–43. https://doi.org/10.1073/pnas.1304437110.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Otero GA, Pliego-Rivero FB, Fernández T, Ricardo J. EEG development in children with sociocultural disadvantages: a follow-up study. Clin Neurophysiol. 2003;114(10):1918–25. Available from http://www.ncbi.nlm.nih.gov/pubmed/14499754.

    Article  PubMed  Google Scholar 

  54. Otero GA. Poverty, cultural disadvantage and brain development: a study of pre-school children in Mexico. Electroencephalogr Clin Neurophysiol. 1997;102(6):512–6. Available from http://www.sciencedirect.com/science/article/pii/S0013469497952139.

    Article  PubMed  Google Scholar 

  55. Otero GA. EEG spectral analysis in children with sociocultural handicaps. Int J Neurosci. 1994;79(3–4):213–20. Available from http://www.ncbi.nlm.nih.gov/pubmed/7744563.

    Article  PubMed  Google Scholar 

  56. Tomarken AJ, Dichter GS, Garber J, Simien C. Resting frontal brain activity: linkages to maternal depression and socio-economic status among adolescents. Biol Psychol. 2004;67(1–2):77–102. Available from http://www.sciencedirect.com/science/article/pii/S030105110400033X.

    Article  PubMed  Google Scholar 

  57. UK Office for National Statistics (2010). Standard Occupational Classification 2010. Volume 3: The National Statistics Socio-economic Classification User Manual. Basingstoke: Palgrave Macmillan.

    Google Scholar 

  58. Lipina SJ, Simonds J, Segretin MS. Recognizing the child in child poverty. Vulnerable Child Youth Stud. 2011;6(1):8–17. https://doi.org/10.1080/17450128.2010.521598.

    Article  Google Scholar 

  59. Duncan GJ, Magnuson K, Votruba-Drzal E. Moving beyond correlations in assessing the consequences of poverty. Annu Rev Psychol. 2017;68(1):413–34. Available from http://www.annualreviews.org/doi/10.1146/annurev-psych-010416-044224.

    Article  PubMed  Google Scholar 

  60. Berger A, Tzur G, Posner MI. Infant brains detect arithmetic errors. Proc Natl Acad Sci U S A. 2006;103(33):12649–53. https://doi.org/10.1073/pnas.0605350103.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Reid VM, Hoehl S, Grigutsch M, Groendahl A, Parise E, Striano T. The neural correlates of infant and adult goal prediction: evidence for semantic processing systems. Dev Psychol. 2009;45(3):620–9. Available from http://www.ncbi.nlm.nih.gov/pubmed/19413420.

    Article  PubMed  Google Scholar 

  62. Ciavarro M, Ambrosini E, Tosoni A, Committeri G, Fattori P, Galletti C. rTMS of medial parieto-occipital cortex interferes with attentional reorienting during attention and reaching tasks. J Cogn Neurosci. 2013;25(9):1453–62. Available from http://www.ncbi.nlm.nih.gov/pubmed/23647519.

    Article  PubMed  Google Scholar 

  63. Luu P, Tucker DM, Derryberry D, Reed M, Poulsen C. Electrophysiological responses to errors and feedback in the process of action regulation. Psychol Sci. 2003;14(1):47–53. Available from http://www.ncbi.nlm.nih.gov/pubmed/12564753.

    Article  PubMed  Google Scholar 

  64. Tsujimoto T, Shimazu H, Isomura Y. Direct recording of theta oscillations in primate prefrontal and anterior cingulate cortices. J Neurophysiol. 2006;95(5):2987–3000. Available from http://www.ncbi.nlm.nih.gov/pubmed/16467430.

    Article  PubMed  Google Scholar 

  65. Petersen SE, Posner MI. The attention system of the human brain: 20 years after. Annu Rev Neurosci. 2012;35(1):73–89. Available from http://www.ncbi.nlm.nih.gov/pubmed/22524787.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Raver CC, Blair C, Willoughby M. Poverty as a predictor of 4-year-olds’ executive function: new perspectives on models of differential susceptibility. Dev Psychol. 2013;49(2):292–304.

    Article  PubMed  Google Scholar 

  67. Lipina SJ, Martelli M, Vuelta B, Colombo JA. Performance on the a-not-b task of Argentinean infants from unsatisfied and satisfied basic needs homes. Int J Psychol. 2005;39(1):49–60.

    Google Scholar 

  68. Coch D, Skendzel W, Neville HJ. Auditory and visual refractory period effects in children and adults: an ERP study. Clin Neurophysiol. 2005;116(9):2184–203. Available from http://www.sciencedirect.com/science/article/pii/S1388245705002312.

    Article  PubMed  Google Scholar 

  69. Fukuda K, Vogel EK. Individual differences in recovery time from attentional capture. Psychol Sci. 2011;22(3):361–8. Available from http://pss.sagepub.com/content/22/3/361.abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Evans GW, Gonnella C, Marcynyszyn LA, Gentile L, Salpekar N. The role of chaos in poverty and children’s socioemotional adjustment. Psychol Sci. 2005;16(7):560–5. Available from http://www.ncbi.nlm.nih.gov/pubmed/16008790.

    Article  PubMed  Google Scholar 

  71. Gulbinaite R, Johnson A, de Jong R, Morey CC, van Rijn H. Dissociable mechanisms underlying individual differences in visual working memory capacity. Neuroimage. 2014;99:197–206. Available from http://www.ncbi.nlm.nih.gov/pubmed/24878830.

    Article  PubMed  Google Scholar 

  72. Kraus N, Chandrasekaran B. Music training for the development of auditory skills. Nat Rev Neurosci. 2010;11(8):599–605. Available from http://www.ncbi.nlm.nih.gov/pubmed/20648064.

    Article  PubMed  Google Scholar 

  73. Krizman J, Marian V, Shook A, Skoe E, Kraus N. Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proc Natl Acad Sci U S A. 2012;109(20):7877–81. Available from http://www.ncbi.nlm.nih.gov/pubmed/22547804.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fox SE, Levitt P, Nelson CA. How the timing and quality of early experiences influence the development of brain architecture. Child Dev. 2010;81(1):28–40. https://doi.org/10.1111/j.1467-8624.2009.01380.x.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Rueda MR, Posner MI, Rothbart MK. The development of executive attention: contributions to the emergence of self-regulation. Dev Neuropsychol. 2005;28(2):573–94. https://doi.org/10.1207/s15326942dn2802_2.

    Article  PubMed  Google Scholar 

  76. Rueda MR, Pozuelos JP, Combita LM. Cognitive neuroscience of attention from brain mechanisms to individual differences in efficiency. AIMS Neurosci. 2015;2(4):183–202. https://doi.org/10.3934/Neuroscience.2015.4.183.

    Article  Google Scholar 

  77. Crone NE, Hao L, Hart J, Boatman D, Lesser RP, Irizarry R, et al. Electrocorticographic gamma activity during word production in spoken and sign language. Neurology. 2001;57(11):2045–53. Available from http://www.ncbi.nlm.nih.gov/pubmed/11739824.

    Article  PubMed  Google Scholar 

  78. Gross DW, Gotman J. Correlation of high-frequency oscillations with the sleep-wake cycle and cognitive activity in humans. Neuroscience. 1999;94(4):1005–18. Available from http://www.ncbi.nlm.nih.gov/pubmed/10625043.

    Article  PubMed  Google Scholar 

  79. Benasich AA, Gou Z, Choudhury N, Harris KD. Early cognitive and language skills are linked to resting frontal gamma power across the first 3 years. Behav Brain Res. 2008;195(2):215–22. Available from http://linkinghub.elsevier.com/retrieve/pii/S0166432808004993.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ray S, Niebur E, Hsiao SS, Sinai A, Crone NE. High-frequency gamma activity (80-150Hz) is increased in human cortex during selective attention. Clin Neurophysiol. 2008;119(1):116–33. Available from http://www.ncbi.nlm.nih.gov/pubmed/18037343.

    Article  PubMed  Google Scholar 

  81. Gou Z, Choudhury N, Benasich AA. Resting frontal gamma power at 16, 24 and 36 months predicts individual differences in language and cognition at 4 and 5 years. Behav Brain Res. 2011;220(2):263–70. Available from http://www.sciencedirect.com/science/article/pii/S016643281100088X.

    Article  PubMed  PubMed Central  Google Scholar 

  82. McLaughlin KA, Sheridan MA. Beyond cumulative risk: a dimensional approach to childhood adversity. Curr Dir Psychol Sci. 2016;25(4):239–45. Available from http://www.ncbi.nlm.nih.gov/pubmed/27773969.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Clarke AR, Barry RJ, McCarthy R, Selikowitz M. Age and sex effects in the EEG: development of the normal child. Clin Neurophysiol. 2001;112(5):806–14. Available from http://www.sciencedirect.com/science/article/pii/S1388245701004886.

    Article  PubMed  Google Scholar 

  84. Marshall PJ, Bar-Haim Y, Fox NA. Development of the EEG from 5 months to 4 years of age. Clin Neurophysiol. 2002;113(8):1199–208. Available from http://www.sciencedirect.com/science/article/pii/S1388245702001633.

    Article  PubMed  Google Scholar 

  85. Takano T, Ogawa T. Characterization of developmental changes in EEG-gamma band activity during childhood using the autoregressive model. Pediatr Int. 1998;40(5):446–52. https://doi.org/10.1111/j.1442-200X.1998.tb01966.x.

    Article  Google Scholar 

  86. Kondacs A, Szabó M. Long-term intra-individual variability of the background EEG in normals. Clin Neurophysiol. 1999;110(10):1708–16. Available from http://www.ncbi.nlm.nih.gov/pubmed/10574286.

    Article  PubMed  Google Scholar 

  87. Hanson JL, Hair N, Shen DG, Shi F, Gilmore JH, Wolfe BL, et al. Family poverty affects the rate of human infant brain growth. PLoS One. 2013;8(12):e80954. https://doi.org/10.1371/journal.pone.0080954.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mezzacappa E. Alerting, orienting, and executive attention: developmental properties and sociodemographic correlates in an epidemiological sample of young, urban children. Child Dev. 2004;75(5):1373–86. https://doi.org/10.1111/j.1467-8624.2004.00746.x.

    Article  PubMed  Google Scholar 

  89. Blair C, Granger DA, Willoughby M, Mills-Koonce R, Cox M, Greenberg MT, et al. Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Dev. 2011;82(6):1970–84. Available from http://www.ncbi.nlm.nih.gov/pubmed/22026915.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Lupien SJ, King S, Meaney MJ, McEwen BS. Can poverty get under your skin? Basal cortisol levels and cognitive function in children from low and high socioeconomic status. Dev Psychopathol. 2001;13(3):653–76. Available from http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=2001-18325-012&site=ehost-live&scope=site.

    Article  Google Scholar 

  91. Lupien SJ, King S, Meaney MJ, BS ME. Child’s stress hormone levels correlate with mother’s socioeconomic status and depressive state. Biol Psychiatry. 2000;48(10):976–80. Available from http://www.ncbi.nlm.nih.gov/pubmed/11082471.

    Article  PubMed  Google Scholar 

  92. Chen E, Cohen S, Miller GE. How low socioeconomic status affects 2-year hormonal trajectories in children. Psychol Sci. 2010;21(1):31–7. Available from http://www.ncbi.nlm.nih.gov/pubmed/20424019.

    Article  PubMed  Google Scholar 

  93. Badanes LS, Watamura SE, Hankin BL. Hypocortisolism as a potential marker of allostatic load in children: associations with family risk and internalizing disorders. Dev Psychopathol. 2011;23(3):881–96. Available from http://www.ncbi.nlm.nih.gov/pubmed/21756439.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Chen E, Paterson LQ. Neighborhood, family, and subjective socioeconomic status: how do they relate to adolescent health? Health Psychol. 2006;25(6):704–14. Available from http://www.ncbi.nlm.nih.gov/pubmed/17100499.

    Article  PubMed  Google Scholar 

  95. Kliewer W, Reid-Quinones K, Shields BJ, Foutz L. Multiple risks, emotion regulation skill, and cortisol in low-income African American youth: a prospective study. J Black Psychol. 2008;35(1):24–43. https://doi.org/10.1177/0095798408323355.

    Article  Google Scholar 

  96. Arnsten AFT. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci. 2009;10(6):410–22. https://doi.org/10.1038/nrn2648.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Lupien SJ, Lepage M. Stress, memory, and the hippocampus: can’t live with it, can’t live without it. Behav Brain Res. 2001;127(1-2):137–58. Available from http://linkinghub.elsevier.com/retrieve/pii/S0166432801003618.

    Article  PubMed  Google Scholar 

  98. Kim P, Evans GW, Angstadt M, Ho SS, Sripada CS, Swain JE, et al. Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proc Natl Acad Sci. 2013;110(46):18442–7. https://doi.org/10.1073/pnas.1308240110.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ursin H, Eriksen HR. The cognitive activation theory of stress. Psychoneuroendocrinology. 2004;29(5):567–92. Available from http://www.sciencedirect.com/science/article/pii/S030645300300091X.

    Article  PubMed  Google Scholar 

  100. Hoff E. How social contexts support and shape language development? Dev Rev. 2006;26(1):55–88. Available from http://linkinghub.elsevier.com/retrieve/pii/S0273229705000316.

    Article  Google Scholar 

  101. Perkins SC, Finegood ED, Swain JE. Poverty and language development: roles of parenting and stress. Innov Clin Neurosci. 2013;10(4):10–9. Available from http://www.ncbi.nlm.nih.gov/pubmed/23696954.

    PubMed  PubMed Central  Google Scholar 

  102. Hoff E. Causes and consequences of SES-related differences in parent-to-child speech. In: Socioeconomic status, parenting, and child development. Mahwah: Lawrence Erlbaum Associates; 2003. p. 147–60.

    Google Scholar 

  103. Huttenlocher J, Vasilyeva M, Cymerman E, Levine S. Language input and child syntax. Cogn Psychol. 2002;45(3):337–74. Available from http://www.ncbi.nlm.nih.gov/pubmed/12480478.

    Article  PubMed  Google Scholar 

  104. Pan BA, Rowe ML, Singer JD, Snow CE. Maternal correlates of growth in toddler vocabulary production in low-income families. Child Dev. 2005;76(4):763–82. https://doi.org/10.1111/j.1467-8624.2005.00876.x.

    PubMed  Google Scholar 

  105. Brito NH, Noble KG. Socioeconomic status and structural brain development. Front Neurosci. 2014;8:276. Available from http://www.ncbi.nlm.nih.gov/pubmed/25249931.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Burger K. How does early childhood care and education affect cognitive development? An international review of the effects of early interventions for children from different social backgrounds. Early Child Res Q. 2010;25(2):140–65. Available from http://www.sciencedirect.com/science/article/pii/S0885200609000921.

    Article  Google Scholar 

  107. Cybele Raver C, McCoy DC, Lowenstein AE, Pess R. Predicting individual differences in low-income children’s executive control from early to middle childhood. Dev Sci. 2013;16(3):394–408. https://doi.org/10.1111/desc.12027.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Goldin AP, Hermida MJ, Shalom DE, Elias Costa M, Lopez-Rosenfeld M, Segretin MS, et al. Far transfer to language and math of a short software-based gaming intervention. Proc Natl Acad Sci. 2014;111(17):6443–8. Available from http://www.pnas.org/content/111/17/6443.abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Jolles DD, Crone EA. Training the developing brain: a neurocognitive perspective. Front Hum Neurosci. 2012;6(76):76. Available from http://www.frontiersin.org/human_neuroscience/10.3389/fnhum.2012.00076/abstract.

    PubMed  PubMed Central  Google Scholar 

  110. Rueda MR, Rothbart MK, McCandliss BD, Saccomanno L, Posner MI. From the cover: training, maturation, and genetic influences on the development of executive attention. Proc Natl Acad Sci. 2005;102(41):14931–6. Available from http://www.pnas.org/content/102/41/14931.abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lipina SJ, Segretin MS, Hermida MJ, Colombo JA. Research on childhood poverty from a cognitive neuroscience perspective: examples of studies in Argentina. In: Handbook of mental health in children and adolescents. London: Sage; 2012. p. 256–74.

    Google Scholar 

  112. Pietto ML, Kamienkowski JE, Lipina SJ. Electrophysiological approaches in the study of cognitive development outside the lab. Buenos Aires: Latin American Brain Mapping Network; 2017.

    Google Scholar 

  113. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and metaanalysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015;329:g7647. https://doi.org/10.1136/bmj.g7647.

    Article  Google Scholar 

  114. Valdez, J.L., Campos S., & Ortega, M.A. Las condiciones de vida en familias de escasos recursos consideradas de “Alto y Bajo Riesgo Psicosocial”. Paper presented at the International Seminary of Cerebral Damage. Toluca (Mexico); 1989.

    Google Scholar 

  115. Hollingshead, A. A. (1975). Four-factor index of social status. Unpublished manuscript, Yale University, New Haven, CT.

    Google Scholar 

Download references

Acknowledgments

Authors are supported by CONICET, FONCYT, CEMIC, Fundación Conectar, and University of Buenos Aires. Authors thank Thomas A. Gavin, Professor Emeritus, Cornell University, for help with editing the English in this chapter. The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Luis Pietto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pietto, M.L., Kamienkowski, J.E., Lipina, S.J. (2017). Electrophysiological Approaches in the Study of the Influence of Childhood Poverty on Cognition. In: Ibáñez, A., Sedeño, L., García, A. (eds) Neuroscience and Social Science. Springer, Cham. https://doi.org/10.1007/978-3-319-68421-5_15

Download citation

Publish with us

Policies and ethics