Skip to main content

Sum Frequency Generation Spectra from Velocity-Velocity Correlation Functions: New Developments and Applications

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 17
  • 1254 Accesses

Abstract

At the interface, the properties of water can be rather different from those observed in the bulk. In this chapter we present an overview of our computational approach to understand water structure and dynamics at the interface including atomistic and electronic structure details. In particular we show how Density Functional Theory-based molecular dynamics simulations (DFT-MD) of water interfaces can provide a microscopic interpretation of recent experimental results from surface sensitive vibrational Sum Frequency Generation spectroscopy (SFG). In our recent work we developed an expression for the calculation of the SFG spectra of water interfaces which is based on the projection of the atomic velocities on the local normal modes. Our approach permits to obtain the SFG signal from suitable velocity-velocity correlation functions, reducing the computational cost to that of the accumulation of a molecular dynamics trajectory, and therefore cutting the overhead costs associated to the explicit calculation of the dipole moment and polarizability tensor. Our method permits to interpret the peaks in the spectrum in terms of local modes, also including the bending region. The results for the water-air interface, obtained using extensive ab initio molecular dynamics simulations over 400 ns, are discussed in connection to recent phase resolved experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Ashihara, N. Huse, A. Espagne, E. Nibbering, T. Elsaesser, Vibrational couplings and ultrafast relaxation of the O-H bending mode in liquid H2O. Chem. Phys. Lett. 424(1–3), 66–70 (2006)

    Article  Google Scholar 

  2. A.D. Becke, Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)

    Article  Google Scholar 

  3. J.E. Bertie, M.K. Ahmed, H.H. Eysel, Infrared intensities of liquids. 5. Optical and dielectric constants, integrated intensities, and dipole moment derivatives of H2O and D2O at 22 ∘c. J. Phys. Chem. 93(6), 2210–2218 (1989)

    Google Scholar 

  4. M.G. Brown, E.A. Raymond, H.C. Allen, L.F. Scatena, G.L. Richmond, The analysis of interference effects in the sum frequency spectra of water interfaces. J. Phys. Chem. A 104(45), 10220–10226 (2000)

    Article  Google Scholar 

  5. S.A. Corcelli, J.L. Skinner, Infrared and raman line shapes of dilute hod in liquid H2O and D2O from 10 to 90 degree. J. Phys. Chem. A 109(28), 6154–6165 (2005)

    Article  Google Scholar 

  6. C. Dutta, A.V. Benderskii, On the assignment of the vibrational spectrum of the water bend at the air/water interface. J. Phys. Chem. Lett. 8, 801–804 (2017)

    Article  Google Scholar 

  7. S. Goedecker, M. Teter, J. Hutter, Separable dual-space gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996)

    Article  Google Scholar 

  8. S. Grimme, J. Antony, S. Ehrlich, H. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132(15), 154104 (2010)

    Google Scholar 

  9. C. Hartwigsen, S. Goedecker, J. Hutter, Relativistic separable dual-space gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998)

    Article  Google Scholar 

  10. J. Hunt, P. Guyot-Sionnest, Y. Shen, Observation of C-H stretch vibrations of monolayers of molecules optical sum-frequency generation. Chem. Phys. Lett. 133(3), 189–192 (1987)

    Article  Google Scholar 

  11. T. Ishiyama, A. Morita, Molecular dynamics study of gas-liquid aqueous sodium halide interfaces. II. Analysis of vibrational sum frequency generation spectra. J. Chem. Phys. C 111(2), 738–748 (2007)

    Google Scholar 

  12. T. Ishiyama, T. Imamura, A. Morita, Theoretical studies of structures and vibrational sum frequency generation spectra at aqueous interfaces. Chem. Rev. 114(17), 8447–8470 (2014)

    Article  Google Scholar 

  13. R. Khatib, M. Sulpizi, Sum frequency generation spectra from velocity-velocity correlation functions. J. Phys. Chem. Lett. 8(6), 1310–1314 (2017). PMID: 28247752

    Article  Google Scholar 

  14. R. Khatib, E.H.G. Backus, M. Bonn, M.-J. Perez-Haro, M.-P. Gaigeot, M. Sulpizi, Water orientation and hydrogen-bond structure at the fluorite/water interface. Sci. Rep. 6, 24287 (2016)

    Article  Google Scholar 

  15. R. Khatib, T. Hasegawa, M. Sulpizi, E.H.G. Backus, M. Bonn, Y. Nagata, Molecular dynamics simulations of SFG librational modes spectra of water at the water-air interface. J. Chem. Phys. C 120(33), 18665–18673 (2016)

    Article  Google Scholar 

  16. A. Kundu, S. Tanaka, T. Ishiyama, M. Ahmed, K.-I. Inoue, S. Nihonyanagi, H. Sawai, S. Yamaguchi, A. Morita, T. Tahara, Bend vibration of surface water investigated by heterodyne-detected sum frequency generation and theoretical study: dominant role of quadrupole. J. Chem. Phys. Lett. 7(13), 2597–2601 (2016)

    Article  Google Scholar 

  17. C. Lee, W. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  Google Scholar 

  18. G. Lippert, J. Hutter, M. Parrinello, A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92(3), 477–488 (1997)

    Article  Google Scholar 

  19. G. Lippert, J. Hutter, M. Parrinello, The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations. Theor. Chem. Acc. 103(2), 124–140 (1999)

    Article  Google Scholar 

  20. N. Marzari, D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands. Phys. Rev. B 56, 12847–12865 (1997)

    Article  Google Scholar 

  21. G.R. Medders, F. Paesani, Dissecting the molecular structure of the air/water interface from quantum simulations of the sum-frequency generation spectrum. J. Am. Chem. Soc. 138(11), 3912–3919 (2016)

    Article  Google Scholar 

  22. A. Morita, J.T. Hynes, A theoretical analysis of the sum frequency generation spectrum of the water surface. Chem. Phys. 258(2–3), 371–390 (2000)

    Article  Google Scholar 

  23. A. Morita, J.T. Hynes, A theoretical analysis of the sum frequency generation spectrum of the water surface. II. Time-dependent approach. J. Phys. Chem. B 106(3), 673–685 (2002)

    Google Scholar 

  24. A. Morita, T. Ishiyama, Recent progress in theoretical analysis of vibrational sum frequency generation spectroscopy. Phys. Chem. Chem. Phys. 10, 5801–5816 (2008)

    Article  Google Scholar 

  25. Y. Nagata, S. Mukamel, Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J. Am. Chem. Soc. 132(18), 6434–6442 (2010)

    Article  Google Scholar 

  26. Y. Nagata, C.-S. Hsieh, T. Hasegawa, J. Voll, E.H.G. Backus, M. Bonn, Water bending mode at the water-vapor interface probed by sum-frequency generation spectroscopy: a combined molecular dynamics simulation and experimental study. J. Chem. Phys. Lett. 4(11), 1872–1877 (2013)

    Article  Google Scholar 

  27. Y. Ni, J.L. Skinner, IR and SFG vibrational spectroscopy of the water bend in the bulk liquid and at the liquid-vapor interface, respectively. J. Chem. Phys. 143(1), 014502 (2015)

    Google Scholar 

  28. S. Nihonyanagi, T. Ishiyama, T.-K. Lee, S. Yamaguchi, M. Bonn, A. Morita, T. Tahara, Unified molecular view of the air/water interface based on experimental and theoretical χ (2) spectra of an isotopically diluted water surface. J. Am. Chem. Soc. 133(42), 16875–16880 (2011)

    Article  Google Scholar 

  29. S. Nihonyanagi, R. Kusaka, K.-I. Inoue, A. Aniruddha, S. Yamaguchi, T. Tahara, Accurate determination of complex χ (2) spectrum of the air/water interface. J. Chem. Phys. 143(12), 124707 (2015)

    Google Scholar 

  30. T. Ohto, K. Usui, T. Hasegawa, M. Bonn, Y. Nagata, Toward ab initio molecular dynamics modeling for sum-frequency generation spectra; an efficient algorithm based on surface-specific velocity-velocity correlation function. J. Chem. Phys. 143(12), 124702 (2015)

    Google Scholar 

  31. P.A. Pieniazek, C.J. Tainter, J.L. Skinner, Surface of liquid water: three-body interactions and vibrational sum-frequency spectroscopy. J. Am. Chem. Soc. 133(27), 10360–10363 (2011)

    Article  Google Scholar 

  32. M. Salanne, R. Vuilleumier, P.A. Madden, C. Simon, P. Turq, B. Guillot, Polarizabilities of individual molecules and ions in liquids from first principles. J. Phys. Condens. Matter 20(49), 494207 (2008)

    Google Scholar 

  33. J. Schaefer, E.H.G. Backus, Y. Nagata, M. Bonn, Both inter- and intramolecular coupling of O-H groups determine the vibrational response of the water/air interface. J. Phys. Chem. Lett. 7(22), 4591–4595 (2016)

    Article  Google Scholar 

  34. Y.R. Shen, Surface properties probed by second-harmonic and sum-frequency generation. Nature 337(6207), 519–525 (1989)

    Article  Google Scholar 

  35. M. Sovago, R.K. Campen, G.W.H. Wurpel, M. MĂ¼ller, H.J. Bakker, M. Bonn, Vibrational response of hydrogen-bonded interfacial water is dominated by intramolecular coupling. Phys. Rev. Lett. 100, 173901 (2008)

    Article  Google Scholar 

  36. M. Sovago, R.K. Campen, H.J. Bakker, M. Bonn, Hydrogen bonding strength of interfacial water determined with surface sum-frequency generation. Chem. Phys. Lett. 470(1–3), 7–12 (2009)

    Article  Google Scholar 

  37. I.V. Stiopkin, C. Weeraman, P.A. Pieniazek, F.Y. Shalhout, J.L. Skinner, A.V. Benderskii, Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474(7350), 192–195 (2011)

    Article  Google Scholar 

  38. M. Sulpizi, M. Salanne, M. Sprik, M.-P. Gaigeot, Vibrational sum frequency generation spectroscopy of the water liquid-vapor interface from density functional theory-based molecular dynamics simulations. J. Phys. Chem. Lett. 4(1), 83–87 (2013)

    Article  Google Scholar 

  39. C.-S. Tian, Y.R. Shen, Isotopic dilution study of the water/vapor interface by phase-sensitive sum-frequency vibrational spectroscopy. J. Am. Chem. Soc. 131(8), 2790–2791 (2009)

    Article  Google Scholar 

  40. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Quickstep: fast and accurate density functional calculations using a mixed gaussian and plane waves approach. Comput. Phys. Commun. 167(2), 103–128 (2005)

    Article  Google Scholar 

  41. E. Whalley, D.D. Klug, Effect of hydrogen bonding on the direction of the dipole-moment derivative of the O-H bond in the water molecule. J. Chem. Phys. 84(1), 78–80 (1986)

    Article  Google Scholar 

  42. S. Yamaguchi, K. Shiratori, A. Morita, T. Tahara, Electric quadrupole contribution to the nonresonant background of sum frequency generation at air/liquid interfaces. J. Chem. Phys. 134(18), 184705 (2011)

    Google Scholar 

  43. X.D. Zhu, H. Suhr, Y.R. Shen, Surface vibrational spectroscopy by infrared-visible sum frequency generation. Phys. Rev. B 35, 3047–3050 (1987)

    Article  Google Scholar 

  44. X. Zhuang, P.B. Miranda, D. Kim, Y.R. Shen, Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. Phys. Rev. B 59, 12632–12640 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG Research Grant SU 752/2-1 and the DFG TRR146. All the dynamics were simulated on the supercomputers of the High Performance Computing Center (HLRS) of Stuttgart (Grant 2DSFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sulpizi Marialore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rémi, K., Marialore, S. (2018). Sum Frequency Generation Spectra from Velocity-Velocity Correlation Functions: New Developments and Applications. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 17 . Springer, Cham. https://doi.org/10.1007/978-3-319-68394-2_8

Download citation

Publish with us

Policies and ethics