Skip to main content

Many-Body Effects in Fragmented, Depleted, and Condensed Bosonic Systems in Traps and Optical Cavities by MCTDHB and MCTDH-X

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 17

Abstract

The many-body physics of trapped Bose-Einstein condensates (BECs) is very rich and demanding. During the past year of the MCTDHB project at the HLRS we continued to shed further light on it with the help of the MultiConfigurational Time-Dependent Hartree for Bosons (MCTDHB) method and using the MCTDHB and MCTDH-X software packages. Indeed, our results on which we report below span a realm of many-body effects in fragmented, depleted, and even in fully condensed BECs. Our findings include: (1) fragmented superradiance of a BEC trapped in an optical cavity; (2) properties of phantom (fragmented) vortices in trapped BECs; (3) dynamics of a two-dimensional trapped BEC described by the Bose-Hubbard Hamiltonian with MCTDH-X; (4) overlap of exact and Gross-Pitaevskii wave-functions in trapped BECs; (5) properties of the uncertainty product of an out-of-equilibrium trapped BEC; (6) many-body excitations and de-excitations in trapped BECs and relation to variance; and (7) many-body effects in the excitation spectrum of weakly-interacting BECs in finite one-dimensional optical lattices. These are all appealing and fundamental many-body results made through the kind allocation of computer resources by the HLRS to the MCTDHB project. Finally, we put forward some future developments and research plans, as well as further many-body perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, General variational many-body theory with complete self-consistency for trapped bosonic systems. Phys. Rev. A 73, 063626 (2006)

    Article  Google Scholar 

  2. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Role of excited states in the splitting of a trapped interacting Bose-Einstein condensate by a time-dependent barrier. Phys. Rev. Lett. 99, 030402 (2007)

    Article  Google Scholar 

  3. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Unified view on multiconfigurational time propagation for systems consisting of identical particles. J. Chem. Phys. 127, 154103 (2007)

    Article  Google Scholar 

  4. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Multiconfigurational time-dependent Hartree method for bosons: many-body dynamics of bosonic systems. Phys. Rev. A 77, 033613 (2008)

    Article  Google Scholar 

  5. K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Exact quantum dynamics of a bosonic Josephson junction. Phys. Rev. Lett. 103, 220601 (2009)

    Article  Google Scholar 

  6. A.U.J. Lode, K. Sakmann, O.E. Alon, L.S. Cederbaum, A.I. Streltsov, Numerically exact quantum dynamics of bosons with time-dependent interactions of harmonic type. Phys. Rev. A 86, 063606 (2012)

    Article  Google Scholar 

  7. A.U.J. Lode, The multiconfigurational time-dependent Hartree method for bosons with internal degrees of freedom: theory and composite fragmentation of multi-component Bose-Einstein condensates. Phys. Rev. A 93, 063601 (2016)

    Article  Google Scholar 

  8. H.-D. Meyer, F. Gatti, G.A. Worth (eds.), Multidimensional Quantum Dynamics: MCTDH Theory and Applications (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  9. N.P. Proukakis, S.A. Gardiner, M.J. Davis, M.H. Szymanska (eds.), Quantum Gases: Finite Temperature and Non-equilibrium Dynamics. Cold Atoms Series, vol. 1 (Imperial College Press, London, 2013)

    Google Scholar 

  10. A.U.J. Lode, K. Sakmann, R.A. Doganov, J. Grond, O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Numerically-exact Schrödinger dynamics of closed and open many-boson systems with the MCTDHB package, in High Performance Computing in Science and Engineering ‘13: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2013, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2013), pp. 81–92

    Google Scholar 

  11. S. Klaiman, A.U.J. Lode, K. Sakmann, O.I. Streltsova, O.E. Alon, L.S. Cederbaum, A.I. Streltsov, Quantum many-body dynamics of trapped bosons with the MCTDHB package: towards new Horizons with novel physics, in High Performance Computing in Science and Engineering ‘14: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2014, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2015), pp. 63–86

    Google Scholar 

  12. O.E. Alon, V.S. Bagnato, R. Beinke, I. Brouzos, T. Calarco, T. Caneva, L.S. Cederbaum, M.A. Kasevich, S. Klaiman, A.U.J. Lode, S. Montangero, A. Negretti, R.S. Said, K. Sakmann, O.I. Streltsova, M. Theisen, M.C. Tsatsos, S.E. Weiner, T. Wells, A.I. Streltsov, MCTDHB physics and technologies: excitations and vorticity, single-shot detection, measurement of fragmentation, and optimal control in correlated ultra-cold bosonic many-body systems, in High Performance Computing in Science and Engineering ‘15: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2015, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2016), pp. 23–50

    Google Scholar 

  13. O.E. Alon, R. Beinke, L.S. Cederbaum, M.J. Edmonds, E. Fasshauer, M.A. Kasevich, S. Klaiman, A.U.J. Lode, N.G. Parker, K. Sakmann, M.C. Tsatsos, A.I. Streltsov, Vorticity, variance, and the vigor of many-body phenomena in ultracold quantum systems: MCTDHB and MCTDH-X, in High Performance Computing in Science and Engineering ‘16: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2016), pp. 79–96

    Google Scholar 

  14. A.I. Streltsov, K. Sakmann, A.U.J. Lode, O.E. Alon, L.S. Cederbaum, The multiconfigurational time-dependent Hartree for Bosons Package, version 2.3, Heidelberg (2013)

    Google Scholar 

  15. A.I. Streltsov, L.S. Cederbaum, O.E. Alon, K. Sakmann, A.U.J. Lode, J. Grond, O.I. Streltsova, S. Klaiman and R. Beinke, The multiconfigurational time-dependent Hartree for Bosons Package, version 3.x, Heidelberg/Kassel (2006-Present), http://mctdhb.org

  16. A.I. Streltsov, O.I. Streltsova, The multiconfigurational time-dependent Hartree for Bosons Laboratory, version 1.5, http://MCTDHB-lab.com

  17. A.U.J. Lode, M.C. Tsatsos, E. Fasshauer, MCTDH-X: The multiconfigurational time-dependent Hartree for indistinguishable particles software, http://ultracold.org; http://mctdh.bf; http://schroedinger.org (2016)

  18. A.U.J. Lode, C. Bruder, Fragmented superradiance of a Bose-Einstein condensate in an optical cavity. Phys. Rev. Lett. 118, 013603 (2017)

    Article  Google Scholar 

  19. S.E. Weiner, M.C. Tsatsos, L.S. Cederbaum, A.U.J. Lode, Phantom vortices: hidden angular momentum in ultracold dilute Bose-Einstein condensates. Sci. Rep. 7, 40122 (2017)

    Article  Google Scholar 

  20. A.U.J. Lode, C. Bruder, Dynamics of Hubbard Hamiltonians with the multiconfigurational time-dependent Hartree method for indistinguishable particles. Phys. Rev. A 94, 013616 (2016)

    Article  Google Scholar 

  21. S. Klaiman, L.S. Cederbaum, Overlap of exact and Gross-Pitaevskii wave functions in Bose-Einstein condensates of dilute gases. Phys. Rev. A 94, 063648 (2016)

    Article  Google Scholar 

  22. S. Klaiman, A.I. Streltsov, O.E. Alon, Uncertainty product of an out-of-equilibrium Bose-Einstein condensate. J. Phys.: Conf. Ser. 826, 012020 (2017)

    Google Scholar 

  23. M. Theisen, A.I. Streltsov, Many-body excitations and deexcitations in trapped ultracold bosonic clouds. Phys. Rev. A 94, 053622 (2016)

    Article  Google Scholar 

  24. R. Beinke, S. Klaiman, L.S. Cederbaum, A.I. Streltsov, O.E. Alon, Many-body effects in the excitation spectrum of weakly-interacting Bose-Einstein condensates in one-dimensional optical lattices. Phys. Rev. A 95, 063602 (2017)

    Article  Google Scholar 

  25. K. Sakmann, M. Kasevich, Single-shot simulations of dynamic quantum many-body systems. Nat. Phys. 12, 451 (2016)

    Article  Google Scholar 

  26. R. Beinke, S. Klaiman, L.S. Cederbaum, A.I. Streltsov, O.E. Alon, Many-body tunneling dynamics of Bose-Einstein condensates and vortex states in two spatial dimensions. Phys. Rev. A 92, 043627 (2015)

    Article  Google Scholar 

  27. M.C. Tsatsos, M.J. Edmonds, N.G. Parker, Transition from vortices to solitonic vortices in trapped atomic Bose-Einstein condensates. Phys. Rev. A 94, 023627 (2016)

    Article  Google Scholar 

  28. S. Klaiman, O.E. Alon, Variance as a sensitive probe of correlations. Phys. Rev. A 91, 063613 (2015)

    Article  Google Scholar 

  29. S. Klaiman, A.I. Streltsov, O.E. Alon, Uncertainty product of an out-of-equilibrium many-particle system. Phys. Rev. A 93, 023605 (2016)

    Article  Google Scholar 

  30. E. Fasshauer, A.U.J. Lode, Multiconfigurational time-dependent Hartree method for fermions: implementation, exactness, and few-fermion tunneling to open space. Phys. Rev. A 93, 033635 (2016)

    Article  Google Scholar 

  31. A.U.J. Lode, B. Chakrabarti, V.K.B. Kota, Many-body entropies, correlations, and emergence of statistical relaxation in interaction quench dynamics of ultracold bosons. Phys. Rev. A 92, 033622 (2015)

    Article  Google Scholar 

  32. T. Wells, A.U.J. Lode, V.S. Bagnato, M.C. Tsatsos, Vortex reconnections in anisotropic trapped three-dimensional Bose-Einstein condensates. J. Low Temp. Phys. 180, 133 (2015)

    Article  Google Scholar 

  33. M.C. Tsatsos, A.U.J. Lode, Resonances and dynamical fragmentation in a stirred Bose-Einstein condensate. J. Low Temp. Phys. 181, 171 (2015)

    Article  Google Scholar 

  34. A.U.J. Lode, S. Klaiman, O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Controlling the velocities and number of emitted particles in the tunneling to open space dynamics. Phys. Rev. A 89, 053620 (2014)

    Article  Google Scholar 

  35. A.U.J. Lode, A.I. Streltsov, K. Sakmann, O.E. Alon, L.S. Cederbaum, How an interacting many-body system tunnels through a potential barrier to open space. Proc. Natl. Acad. Sci. USA 109, 13521 (2012)

    Article  Google Scholar 

  36. A.U.J. Lode, Tunneling Dynamics in Open Ultracold Bosonic Systems (Springer Theses, Springer, 2015). ISBN 978-3-319-07085-8

    Book  MATH  Google Scholar 

  37. I. Březinova, A.U.J. Lode, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, J. Burgdörfer, Wave chaos as signature for depletion of a Bose-Einstein condensate. Phys. Rev. A 86, 013630 (2012)

    Article  Google Scholar 

  38. I. Březinova, A.U.J. Lode, A.I. Streltsov, L.S. Cederbaum, O.E. Alon, L.A. Collins, B.I. Schneider, J. Burgdörfer, Elastic scattering of a Bose-Einstein condensate at a potential landscape. J. Phys. Conf. Ser. 488, 012032 (2014)

    Article  Google Scholar 

  39. O.E. Alon, A.I. Streltsov, K. Sakmann, A.U.J. Lode, J. Grond, L.S. Cederbaum, Recursive formulation of the multiconfigurational time-dependent Hartree method for fermions, bosons and mixtures thereof in terms of one-body density operators. Chem. Phys. 401, 2 (2012)

    Article  Google Scholar 

  40. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998)

    Article  Google Scholar 

  41. M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature 415, 39 (2002)

    Article  Google Scholar 

  42. R. Jördens, N. Strohmaier, K. Günter, H. Moritz, T. Esslinger, A Mott insulator of fermionic atoms in an optical lattice. Nature 455, 204 (2008)

    Article  Google Scholar 

  43. J. Struck, M. Weinberg, C. Ölschläger, P. Windpassinger, J. Simonet, K. Sengstock, R. Höppner, P. Hauke, A. Eckardt, M. Lewenstein, L. Mathey, Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields. Nat. Phys. 9, 738 (2013)

    Article  Google Scholar 

  44. P. Hauke, O. Tielemann, A. Celi, C. Ölschläger, J. Simonet, J. Struck, M. Weinberg, P. Windpassinger, K. Sengstock, M. Lewenstein, A. Eckardt, Non-abelian gauge fields and topological insulators in Shaken optical lattices. Phys. Rev. Lett. 109, 145301 (2012)

    Article  Google Scholar 

  45. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vapor. Science 269, 198 (1995)

    Article  Google Scholar 

  46. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687 (1995)

    Article  Google Scholar 

  47. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)

    Article  Google Scholar 

  48. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  Google Scholar 

  49. A.J. Leggett, Bose-Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307 (2001)

    Article  Google Scholar 

  50. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)

    Article  Google Scholar 

  51. E.H. Lieb, R. Seiringer, J. Yngvason, Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  Google Scholar 

  52. E.H. Lieb, R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Article  Google Scholar 

  53. N.P. Proukakis, B. Jackson, Finite-temperature models of Bose-Einstein condensation. J. Phys. B 41, 203002 (2008)

    Article  Google Scholar 

  54. L. Cohen, C. Lee, Exact reduced density matrices for a model problem. J. Math. Phys. 26, 3105 (1985)

    Article  MathSciNet  Google Scholar 

  55. J. Yan, Harmonic interaction model and its applications in Bose-Einstein condensation. J. Stat. Phys. 113, 623 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  56. M. Gajda, Criterion for Bose-Einstein condensation in a harmonic trap in the case with attractive interactions. Phys. Rev. A 73, 023603 (2006)

    Article  Google Scholar 

  57. O.E. Alon, Many-body excitation spectra of trapped bosons with general interaction by linear response. J. Phys.: Conf. Ser. 594, 012039 (2015)

    Google Scholar 

  58. C. Schilling, R. Schilling, Number-parity effect for confined fermions in one dimension. Phys. Rev. 93, 021601(R) (2016)

    Google Scholar 

  59. E. Fasshauer, A.U.J. Lode, Multiconfigurational time-dependent Hartree method for fermions: implementation, exactness, and few-fermion tunneling to open space. Phys. Rev. A 93, 033635 (2016)

    Article  Google Scholar 

  60. G.J. Milburn, J. Corney, E.M. Wright, D.F. Walls, Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A 55, 4318 (1997)

    Article  Google Scholar 

  61. A. Smerzi, S. Fantoni, S. Giovanazzi, S.R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates. Phys. Rev. Lett. 79, 4950 (1997)

    Article  Google Scholar 

  62. S. Raghavan, A. Smerzi, V.M. Kenkre, Transitions in coherent oscillations between two trapped Bose-Einstein condensates. Phys. Rev. A 60, R1787 (1999)

    Article  Google Scholar 

  63. C. Orzel, A.K. Tuchman, M.L. Fenselau, M. Yasuda, M.A. Kasevich, Squeezed states in a Bose-Einstein condensate. Science 291, 2386 (2001)

    Article  Google Scholar 

  64. A. Vardi, J.R. Anglin, Bose-Einstein condensates beyond mean field theory: quantum backreaction as decoherence. Phys. Rev. Lett. 86, 568 (2001)

    Article  Google Scholar 

  65. M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, M.K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett. 95, 010402 (2005)

    Article  Google Scholar 

  66. T. Schumm, S. Hofferberth, L.M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, P. Krüger, Matter-wave interferometry in a double well on an atom chip. Nat. Phys. 1, 57 (2005)

    Article  MATH  Google Scholar 

  67. S. Levy, E. Lahoud, I. Shomroni, J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate. Nature (London) 449, 579 (2007)

    Google Scholar 

  68. M. Trujillo-Martinez, A. Posazhennikova, J. Kroha, Nonequilibrium Josephson oscillations in Bose-Einstein condensates without dissipation. Phys. Rev. Lett. 103, 105302 (2009)

    Article  Google Scholar 

  69. T. Zibold, E. Nicklas, C. Gross, M.K. Oberthaler, Classical bifurcation at the transition from Rabi to Josephson dynamics. Phys. Rev. Lett. 105, 204101 (2010)

    Article  Google Scholar 

  70. K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Universality of fragmentation in the Schrödinger dynamics of bosonic Josephson junctions. Phys. Rev. A 89, 023602 (2014)

    Article  Google Scholar 

  71. H. Veksler, S. Fishman, Semiclassical analysis of Bose-Hubbard dynamics. New J. Phys. 17, 053030 (2015)

    Article  Google Scholar 

  72. R.A. Doganov, S. Klaiman, O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Two trapped particles interacting by a finite-range two-body potential in two spatial dimensions. Phys. Rev. A 87, 033631 (2013)

    Article  Google Scholar 

  73. U.R. Fischer, A.U.J. Lode, B. Chatterjee, Condensate fragmentation as a sensitive measure of the quantum many-body behavior of bosons with long-range interactions. Phys. Rev. A 91, 063621 (2015)

    Article  Google Scholar 

  74. P. Bader, U.R. Fischer, Fragmented many-body ground states for scalar bosons in a single trap. Phys. Rev. Lett. 103, 060402 (2009)

    Article  Google Scholar 

  75. A.I. Streltsov, Quantum systems of ultracold bosons with customized interparticle interactions. Phys. Rev. A 88, 041602(R) (2013)

    Google Scholar 

  76. M.-K. Kang, U.R. Fischer, Revealing single-trap condensate fragmentation by measuring density-density correlations after time of flight. Phys. Rev. Lett. 113, 140404 (2014)

    Article  Google Scholar 

  77. O.I. Streltsova, O.E. Alon, L.S. Cederbaum, A.I. Streltsov, Generic regimes of quantum many-body dynamics of trapped bosonic systems with strong repulsive interactions. Phys. Rev. A 89, 061602(R) (2014)

    Google Scholar 

  78. U.R. Fischer, M.-K. Kang, “Photonic” cat states from strongly interacting matter waves. Phys. Rev. Lett. 115, 260404 (2015)

    Article  Google Scholar 

  79. J. Grond, J. Schmiedmayer, U. Hohenester, Optimizing number squeezing when splitting a mesoscopic condensate. Phys. Rev. A 79, 021603(R) (2009)

    Google Scholar 

  80. J. Grond, T. Betz, U. Hohenester, N.J. Mauser, J. Schmiedmayer, T. Schumm, The Shapiro effect in atomchip-based bosonic Josephson junctions. New J. Phys. 13, 065026 (2011)

    Article  Google Scholar 

  81. M. Heimsoth, D. Hochstuhl, C.E. Creffield, L.D. Carr, F. Sols, Effective Josephson dynamics in resonantly driven Bose-Einstein condensates. New J. Phys. 15, 103006 (2013)

    Article  Google Scholar 

  82. S.I. Mistakidis, L. Cao, P. Schmelcher, Negative-quench-induced excitation dynamics for ultracold bosons in one-dimensional lattices. Phys. Rev. A 91, 033611 (2015)

    Article  Google Scholar 

  83. S. Krönke, P. Schmelcher, Many-body processes in black and gray matter-wave solitons. Phys. Rev. A 91, 053614 (2015)

    Article  Google Scholar 

  84. S. Krönke, P. Schmelcher, Two-body correlations and natural-orbital tomography in ultracold bosonic systems of definite parity. Phys. Rev. A 92, 023631 (2015)

    Article  Google Scholar 

  85. S.I. Mistakidis, T. Wulf, A. Negretti, P. Schmelcher, Resonant quantum dynamics of few ultracold bosons in periodically driven finite lattices. J. Phys. B 48, 244004 (2015)

    Article  Google Scholar 

  86. I. Brouzos, A.I. Streltsov, A. Negretti, R.S. Said, T. Caneva, S. Montangero, T. Calarco, Quantum speed limit and optimal control of many-boson dynamics. Phys. Rev. A 92, 062110 (2015)

    Article  Google Scholar 

  87. S. Dutta, S. Basu, Condensate characteristics of bosons in a tilted optical lattice. J. Phys.: Conf. Ser. 759, 012036 (2016)

    Google Scholar 

  88. O.V. Marchukov, U.R. Fischer, Phase-fluctuating condensates are fragmented: an experimental benchmark for self-consistent quantum many-body calculations. arXiv:1701.06821v2 [cond-mat.quant-gas].

    Google Scholar 

  89. S. Bauch, K. Balzer, C. Henning, M. Bonitz, Quantum breathing mode of trapped bosons and fermions at arbitrary coupling. Phys. Rev. B 80, 054515 (2009)

    Article  Google Scholar 

  90. R. Schmitz, S. Krönke, L. Cao, P. Schmelcher, Quantum breathing dynamics of ultracold bosons in one-dimensional harmonic traps: unraveling the pathway from few- to many-body systems. Phys. Rev. A 88, 043601 (2013)

    Article  Google Scholar 

  91. J. Grond, A.I. Streltsov, A.U.J. Lode, K. Sakmann, L.S. Cederbaum, O.E. Alon, Excitation spectra of many-body systems by linear response: general theory and applications to trapped condensates. Phys. Rev. A 88, 023606 (2013)

    Article  Google Scholar 

  92. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Unified view on linear response of interacting identical and distinguishable particles from multiconfigurational time-dependent Hartree methods. J. Chem. Phys. 140, 034108 (2014)

    Article  Google Scholar 

  93. P. Grech, R. Seiringer, The excitation spectrum for weakly-interacting bosons in a trap. Commun. Math. Phys. 322, 559 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  94. Y. Saad, Numerical Methods for Large Eigenvalue Problems (Halstead Press, New York, 1992)

    MATH  Google Scholar 

  95. W.E. Arnoldi, The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9, 17–29 (1951). https://doi.org/10.1090/qam/42792; http://www.ams.org/journals/qam/1951-09-01/S0033-569X-1951-42792-9/

  96. X.-F. Zhang, M. Kato, W. Han, S.-G. Zhang, H. Saito, Spin-orbit-coupled Bose-Einstein condensates held under a toroidal trap. Phys. Rev. A 95, 033620 (2017)

    Article  Google Scholar 

  97. H. Wang, M. Thoss, Numerically exact quantum dynamics for indistinguishable particles: the multilayer multiconfiguration time-dependent Hartree theory in second quantization representation. J. Chem. Phys. 131, 024114 (2009)

    Article  Google Scholar 

  98. S. Krönke, L. Cao, O. Vendrell, P. Schmelcher, Non-equilibrium quantum dynamics of ultra-cold atomic mixtures: the multi-layer multi-configuration time-dependent Hartree method for bosons. New J. Phys. 15, 063018 (2013)

    Article  MathSciNet  Google Scholar 

  99. L. Cao, S. Krönke, O. Vendrell, P. Schmelcher, The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications. J. Chem. Phys. 139, 134103 (2013)

    Article  Google Scholar 

  100. U. Manthe, T. Weike, On the multi-layer multi-configurational time-dependent Hartree approach for bosons and fermions. J. Chem. Phys. 146, 064117 (2017)

    Article  Google Scholar 

  101. L. Cao, V. Bolsinger, S.I. Mistakidis, G.M. Koutentakis, S. Krönke, J.M. Schurer, P. Schmelcher, A unified ab initio approach to the correlated quantum dynamics of ultracold fermionic and bosonic mixtures. J. Chem. Phys. 147, 044106 (2017).

    Article  Google Scholar 

  102. C. Lévêque, L.B. Madsen, Time-dependent restricted-active-space self-consistent-field theory for bosonic many-body systems. New J. Phys. 19, 043007 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. OEA acknowledges funding by the Israel Science Foundation (Grant No. 600/15). RB acknowledges financial support by the IMPRS-QD (International Max Planck Research School for Quantum Dynamics), the Landes-graduiertenförderung Baden-Württemberg, and the Minerva Foundation. AUJL and CB acknowledge financial support by the Swiss SNF and the NCCR Quantum Science and Technology. MCT acknowledges financial support by FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexej I. Streltsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alon, O.E. et al. (2018). Many-Body Effects in Fragmented, Depleted, and Condensed Bosonic Systems in Traps and Optical Cavities by MCTDHB and MCTDH-X. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 17 . Springer, Cham. https://doi.org/10.1007/978-3-319-68394-2_6

Download citation

Publish with us

Policies and ethics