Skip to main content

Mesoscale Simulations of Janus Particles and Deformable Capsules in Flow

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 17

Abstract

Complex fluids are common in our daily life and play an important role in many industrial applications. The understanding of the dynamical properties of these fluids and interfacial effects is still lacking. Computer simulations pose an attractive way to gain insight into the underlying physics. In this report we restrict ourselves to two examples of complex fluids and their simulation by means of numerical schemes coupled to the lattice Boltzmann method as a solver for the hydrodynamics of the problem. First, we study Janus particles at a fluid-fluid interface using the Shan-Chen pseudopotential approach for multicomponent fluids in combination with a discrete element algorithm. Second, we study the dense suspension of deformable capsules in a Kolmogorov flow by combining the lattice Boltzmann method with the immersed boundary method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.P. Binks, P.D.I. Fletcher, Particles adsorbed at the oil-water interface: a theoretical comparison between spheres of uniform wettability and “Janus” particles. Langmuir 17, 4708 (2001)

    Article  Google Scholar 

  2. G.B. Davies, T. Krüger, P.V. Coveney, J. Harting, F. Bresme, Assembling ellipsoidal particles at fluid interfaces using switchable dipolar capillary interactions. Adv. Mater. 26, 6715 (2014)

    Article  Google Scholar 

  3. D. Stamou, C. Duschl, D. Johannsmann, Long-range attraction between colloidal spheres at the air-water interface: the consequence of an irregular meniscus. Phys. Rev. E 62, 5263 (2000)

    Article  Google Scholar 

  4. Q. Xie, G. Davies, F. Günther, J. Harting, Tunable dipolar capillary deformations for magnetic Janus particles at fluid-fluid interfaces. Soft Matter 11, 3581 (2015)

    Article  Google Scholar 

  5. T. Krüger, S. Frijters, F. Günther, B. Kaoui, J. Harting, Numerical simulations of complex fluid-fluid interface dynamics. Eur. Phys. J. Spec. Top. 222, 177 (2013)

    Article  Google Scholar 

  6. H. Mehrabian, J. Harting, J.H. Snoeijer, Soft particles at a fluid interface. Soft Matter 12, 1062–1073 (2016)

    Article  Google Scholar 

  7. M. Thiébaud, Z. Shen, J. Harting, C. Misbah, Prediction of anomalous blood viscosity in confined shear flow. Phys. Rev. Lett. 112, 238304 (2014)

    Article  Google Scholar 

  8. F. Janoschek, F. Toschi, J. Harting, Simplified particulate model for coarse-grained hemodynamics simulations. Phys. Rev. E 82, 056710 (2010)

    Article  Google Scholar 

  9. C. Misbah, Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96, 28104 (2006)

    Article  Google Scholar 

  10. B. Kaoui, T. Krüger, J. Harting, How does confinement affect the dynamics of viscous vesicles and red blood cells? Soft Matter 8, 9246 (2012)

    Article  Google Scholar 

  11. R. Kusters, T. van der Heijden, B. Kaoui, J. Harting, C. Storm, Forced transport of deformable containers through narrow constrictions. Phys. Rev. E 90, 033006 (2014)

    Article  Google Scholar 

  12. T. Krüger, B. Kaoui, J. Harting, Interplay of inertia and deformability on rheological properties of a suspension of capsules. J. Fluid Mech. 751, 725 (2014)

    Article  Google Scholar 

  13. A.J. Liu, S.R. Nagel, Nonlinear dynamics: jamming is not just cool any more. Nature 396, 21–22 (1998)

    Article  Google Scholar 

  14. R. Benzi, M. Bernaschi, M. Sbragaglia, S. Succi, Rheological properties of soft-glassy flows from hydro-kinetic simulations. Europhys. Lett. 104, 48006 (2013)

    Article  Google Scholar 

  15. M. Gross, T. Krüger, F. Varnik, Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects. Soft Matter 10, 4360–4372 (2014)

    Article  Google Scholar 

  16. Q. Xie, G.B. Davies, J. Harting, Controlled capillary assembly of magnetic Janus particles at fluid-fluid interfaces. Soft Matter 12, 6566–6574 (2016)

    Article  Google Scholar 

  17. S. Succi, The Lattice Boltzmann Equation (Oxford University Press, Oxford, 2001)

    MATH  Google Scholar 

  18. J. Harting, M. Harvey, J. Chin, M. Venturoli, P.V. Coveney, Large-scale lattice Boltzmann simulations of complex fluids: advances through the advent of computational grids. Philos. Trans. R. Soc. Lond. A 363, 1895 (2005)

    Article  MathSciNet  Google Scholar 

  19. X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47, 1815 (1993)

    Article  Google Scholar 

  20. S. Cappelli, Q. Xie, J. Harting, A.M. Jong, M.W.J. Prins, Dynamic wetting: status and prospective of single particle based experiments and simulations. New Biotechnol. 32, 420–432 (2015)

    Article  Google Scholar 

  21. A.J.C. Ladd, R. Verberg, Lattice-Boltzmann simulations of particle-fluid suspensions. J. Stat. Phys. 104, 1191 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Komnik, J. Harting, H.J. Herrmann, Transport phenomena and structuring in shear flow of suspensions near solid walls. J. Stat. Mech: Theory Exp. 2004, P12003 (2004)

    Article  MATH  Google Scholar 

  23. F. Jansen, J. Harting, From bijels to Pickering emulsions: a lattice Boltzmann study. Phys. Rev. E 83, 046707 (2011)

    Article  Google Scholar 

  24. F. Günther, F. Janoschek, S. Frijters, J. Harting, Lattice Boltzmann simulations of anisotropic particles at liquid interfaces. Comput. Fluids 80, 184 (2013)

    Article  Google Scholar 

  25. S. Frijters, F. Günther, J. Harting, Effects of nanoparticles and surfactant on droplets in shear flow. Soft Matter 8, 6542 (2012)

    Article  Google Scholar 

  26. F. Günther, S. Frijters, J. Harting, Timescales of emulsion formation caused by anisotropic particles. Soft Matter 10, 4977 (2014)

    Article  Google Scholar 

  27. S. Frijters, F. Günther, J. Harting, Domain and droplet sizes in emulsions stabilized by colloidal particles. Phys. Rev. E 90, 042307 (2014)

    Article  Google Scholar 

  28. C.K. Aidun, Y. Lu, E.-J. Ding, Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287 (1998)

    Article  MATH  Google Scholar 

  29. F. Janoschek, J. Harting, F. Toschi, Accurate lubrication corrections for spherical and non-spherical particles in discretized fluid simulations (2016). arXiv:1308.6482

    Google Scholar 

  30. H. Hertz, Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156 (1881)

    MATH  Google Scholar 

  31. C.S. Peskin, The immersed boundary method. Acta Numer. 11, 479 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Krüger, Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells Under Shear (Springer, Berlin, 2012)

    Book  Google Scholar 

  33. R. Skalak, Modelling the mechanical behavior of red blood cells. Biorheology 10(2), 229–238 (1973)

    Article  Google Scholar 

  34. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973)

    Article  Google Scholar 

  35. M. Meyer, M. Desbrun, P. Schröder, A.H. Barr et al., Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. 3, 52–58 (2002)

    MATH  Google Scholar 

  36. T. Krüger, F. Varnik, D. Raabe, Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485–3505 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Schmieschek, A. Narváez Salazar, J. Harting, Multi relaxation time lattice Boltzmann simulations of multiple component fluid flows in porous media, in High Performance Computing in Science and Engineering ’12, ed. by M. Resch W. Nagel, D. Kröner (Springer, Berlin, 2013), p. 39

    Google Scholar 

  38. Q. Xie, F. Günther, J. Harting, Mesoscale simulations of anisotropic particles at fluid-fluid interfaces, in High Performance Computing in Science and Engineering ’15, ed. by E.W. Nagel, H.D. Kröner, M.M. Resch (Springer, Berlin, 2016), pp. 565–577

    Google Scholar 

  39. Y. Kantor, D.R. Nelson, Phase transitions in flexible polymeric surfaces. Phys. Rev. A 36, 4020 (1987)

    Article  Google Scholar 

  40. A. Farutin, T. Biben, C. Misbah, 3d numerical simulations of vesicle and inextensible capsule dynamics. J. Comput. Phys. 275, 539–568 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. T. Surazhsky, E. Magid, O. Soldea, G. Elber, E. Rivlin, A comparison of gaussian and mean curvatures estimation methods on triangular meshes, in IEEE International Conference on Robotics and Automation, 2003. Proceedings. ICRA’03, vol. 1 (IEEE, New York, 2003), pp. 1021–1026

    Google Scholar 

  42. K. Tsubota, Short note on the bending models for a membrane in capsule mechanics: comparison between continuum and discrete models. J. Comput. Phys. 277, 320–328 (2014)

    Article  MATH  Google Scholar 

  43. A. Guckenberger, S. Gekle, Theory and algorithms to compute Helfrich bending forces: a review. J. Phys.: Condens. Matter 29(20), 203001 (2017)

    Google Scholar 

  44. W.H. Herschel, R. Bulkley, Measurement of consistency as applied to rubber-benzene solutions, in American Society of Test Proceedings, vol. 26 (1926), pp. 621–633

    Google Scholar 

Download references

Acknowledgements

We thank M. Zellhöfer for fruitful discussions and technical support. Q. Xie and J. Harting acknowledge financial support from NWO/STW (STW project 13291). We thank the High Performance Computing Center Stuttgart for the allocation of computing time on Hornet and Hazel Hen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Harting .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aouane, O., Xie, Q., Scagliarini, A., Harting, J. (2018). Mesoscale Simulations of Janus Particles and Deformable Capsules in Flow. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 17 . Springer, Cham. https://doi.org/10.1007/978-3-319-68394-2_22

Download citation

Publish with us

Policies and ethics