Skip to main content

Towards the Implementation of a New Multigrid Solver in the DNS Code FS3D for Simulations of Shear-Thinning Jet Break-Up at Higher Reynolds Numbers

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering ' 17

Abstract

Liquid jet break-up appears in many technical applications, as well as in nature. It consists of complex physical processes, which happen on very small scales in space and time. This makes them hard to capture by experimental methods; and therefore a prime subject for numerical investigations. The state-of-the-art approach combines the Volume of Fluid (VOF) method with Direct Numerical Simulations (DNS) as employed in the ITLR in-house code Free Surface 3D (FS3D). The simulation of these jets is dependent on very fine grids, with most of the computational costs incurred by solving the Pressure Poisson Equation. In order to simulate larger computational domains, we tried to improve the performance of FS3D by the implementation of a new multigrid solver. For this we selected the solver contained in the UG4 package developed by the Goethe Center for Scientific Computing at the University of Frankfurt. We will show simulations of the primary break-up of shear-thinning liquid jets and explain why larger computational domains are necessary. Results are preliminary. We demonstrate that the implementation of UG4 into FS3D provides a noticeable increase in weak scaling performance, while the change in strong scaling is yet detrimental. We will then discuss ways to further improve these results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Beau, M. Funk, R. Lebas, F. Demoulin, Cavitation applying quasi-multiphase model to simulate atomization in diesel engines. SAE Technical Papers 01-0220 (2005)

    Google Scholar 

  2. J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface-tension. J. Comput. Phys. 100(2), 335–354 (1992)

    MathSciNet  MATH  Google Scholar 

  3. K. Eisenschmidt, M. Ertl, H. Gomaa, C. Kieffer-Roth, C. Meister, P. Rauschenberger, M. Reitzle, K. Schlottke, B. Weigand, Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D. J. Appl. Math. Comput. 272(2), 508–517 (2016) https://doi.org/10.1016/j.amc.2015.05.095

    MathSciNet  Google Scholar 

  4. M. Ertl, B. Weigand, Investigation of the influence of atmospheric pressure on the jet breakup of a shear thinning liquid with DNS, in ILASS 2014, Bremen (2014)

    Google Scholar 

  5. M. Ertl, B. Weigand, Analysis methods for direct numerical simulations of primary breakup of shear-thinning liquid jets. Atomization Sprays 27(4), 303–317 (2017)

    Google Scholar 

  6. M. Ertl, N. Roth, G. Brenn, H. Gomaa, B. Weigand, Simulations and experiments on shape oscillations of newtonian and non-Newtonian liquid droplets, in ILASS 2013 (2013), p. 7

    Google Scholar 

  7. M. Ertl, G. Karch, F. Sadlo, T. Ertl, B. Weigand, Investigation and visual analysis of direct simulations of quasi-steady primary break-up of shear thinning liquids, in Proceedings 9th International Conference on Multiphase Flow: ICMF 2016, Firenze (2016)

    Google Scholar 

  8. U. Fritsching, Process-Spray: Functional Particles Produced in Spray Processes (Springer, Cham, 2016)

    Google Scholar 

  9. C. Galbiati, M. Ertl, S. Tonini, G.E. Cossali, B. Weigand, DNS investigation of the primary breakup in a conical swirled jet, in High Performance Computing in Science and Engineering’15 Transactions of the High Performance Computing Center, Stuttgart (HLRS) (Springer, Cham, 2016), pp. 333–347

    Google Scholar 

  10. H. Gomaa, I. Stotz, M. Sievers, G. Lamanna, B. Weigand, Preliminary investigation on diesel droplet impact on oil wallfilms in diesel engines, in ILASS – Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril, September 2011

    Google Scholar 

  11. F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    MathSciNet  MATH  Google Scholar 

  12. J. Hernández, J. López, P. Gómez, C. Zanzi, F. Faura, A new volume of fluid method in three dimensions—part I: multidimensional advection method with face-matched flux polyhedra. Int. J. Numer. Methods Fluids 58(8), 897–921 (2008). https://doi.org/https://doi.org/10.1002/fld.1776

    MATH  Google Scholar 

  13. M. Herrmann, A dual-scale les subgrid model for turbulent liquid/gas phase interface dynamics, in 13th Triennial International Conference on Liquid Atomization and Spray Systems ICLASS 2015, Tainan, August 23–27 (2015)

    Google Scholar 

  14. C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5

    MATH  Google Scholar 

  15. M. Klein, Direct numerical simulation of a spatially developing water sheet at moderate Reynolds number. Int. J. Heat Fluid Flow 26, 722–731 (2005)

    MathSciNet  Google Scholar 

  16. B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113(1), 134–147 (1994)

    MathSciNet  MATH  Google Scholar 

  17. A. Lakdawala, R. Thaokar, A. Sharma, Break-up of a non-newtonian jet injected downwards in a newtonian liquid. Sadhana Indian Acad. Sci. 40, 819–833 (2015)

    MathSciNet  MATH  Google Scholar 

  18. A.H. Lefebvre, Atomization and Sprays (Hemisphere, New York, 1989)

    Google Scholar 

  19. H. Li-Ping, Z. Meng-Zheng, D. Qing, L. Ning, X. Zhen-Yan, Large eddy simulation of atomization process of non-newtonian liquid jet. Adv. Sci. Lett. 8, 285–290 (2012)

    Google Scholar 

  20. S.P. Lin, R.D. Reitz, Drop and spray formation from a liquid jet. Annu. Rev. Fluid Mech. 30, 85–105 (1998)

    MathSciNet  MATH  Google Scholar 

  21. C.D. Munz, T. Westermann, Numerische Behandlung gewöhnlicher und partieller Differenzialgleichungen (Springer, Berlin, 2006). ISBN 978-3-540-29867-3

    MATH  Google Scholar 

  22. Y. Pan, H. Suga, A numerical study on the breakup process of laminar liquid jets into a gas. Phys. Fluids 18, 052101 (2006)

    Google Scholar 

  23. S. Popinet, An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228(16), 5838–5866 (2009). https://doi.org/10.1016/j.jcp.2009.04.042

    MathSciNet  MATH  Google Scholar 

  24. P. Rauschenberger, B. Weigand, Direct numerical simulation of rigid bodies in multiphase flow within an Eulerian framework. J. Comput. Phys. 291, 238–253 (2015). https://doi.org/10.1016/j.jcp.2015.03.023

    MathSciNet  MATH  Google Scholar 

  25. P. Rauschenberger, J. Schlottke, K. Eisenschmidt, B. Weigand, Direct numerical simulation of multiphase flow with rigid body motion in an Eulerian framework, in ILASS - Europe 2011, 24th European Conference on Liquid Atomization and Spray Systems, Estoril (2011)

    Google Scholar 

  26. P. Rauschenberger, J. Schlottke, B. Weigand, A computation technique for rigid particle flows in an Eulerian framework using the multiphase DNS code FS3D, in High Performance Computing in Science and Engineering’11 Transactions of the High Performance Computing Center, Stuttgart (HLRS) (2011). https://doi.org/10.1007/978-3-642-23869-7_23

    Google Scholar 

  27. S. Reiter, A. Vogel, I. Heppner, M. Rupp, G. Wittum, A massively parallel geometric multigrid solver on hierarchically distributed grids. Comput. Vis. Sci. 16(4), 151–164 (2013). https://doi.org/10.1007/s00791-014-0231-x

    MATH  Google Scholar 

  28. M. Reitzle, C. Kieffer-Roth, H. Garcke, B. Weigand, A volume-of-fluid method for three-dimensional hexagonal solidification processes. J. Comput. Phys. 339, 356–369 (2017). https://doi.org/10.1016/j.jcp.2017.03.001

    MathSciNet  Google Scholar 

  29. W.J. Rider, D.B. Kothe, Reconstructing volume tracking. J. Comput. Phys. 141(2), 112–152 (1998). https://doi.org/https://doi.org/10.1006/jcph.1998.5906

    MathSciNet  MATH  Google Scholar 

  30. M. Rieber, Numerische Modellierung der Dynamik freier Grenzflächen in Zweiphasenströmungen. Dissertation, Universität Stuttgart, 2004

    Google Scholar 

  31. M. Rieber, F. Graf, M. Hase, N. Roth, B. Weigand, Numerical simulation of moving spherical and strongly deformed droplets, in Proceedings ILASS-Europe (2000), pp. 1–6

    Google Scholar 

  32. N. Roth, J. Schlottke, J. Urban, B. Weigand, Simulations of droplet impact on cold wall without wetting, in ILASS (2008), pp. 1–7

    Google Scholar 

  33. N. Roth, H. Gomaa, B. Weigand, Droplet collisions at high weber numbers: experiments and numerical simulations, in Proceedings of DIPSI Workshop 2010 on Droplet Impact Phenomena & Spray Investigation, Bergamo (2010)

    Google Scholar 

  34. W. Sander, B. Weigand, Direct numerical simulation of primary breakup phenomena in liquid sheets, in High-Performance Computing in Science and Engineering 2006: Transactions of the High Performance Computing Center Stuttgart (HLRS) (Springer, Berlin, 2006), pp. 223–236

    Google Scholar 

  35. J. Shinjo, A. Umemura, Surface instability and primary atomization characteristics of straight liquid jet sprays. Int. J. Multiphase Flow 37, 1294–1304 (2011)

    Google Scholar 

  36. G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    MathSciNet  MATH  Google Scholar 

  37. R.I. Tanner, Engineering Rheology. Oxford Engineering Science Series, 2nd edn. (Oxford University Press, Oxford, 2002)

    Google Scholar 

  38. A. Vogel, S. Reiter, M. Rupp, A. Nägel, G. Wittum, UG4: a novel flexible software system for simulating PDE based models on high performance computers. Comput. Vis. Sci. 16(4), 165–179 (2013). https://doi.org/10.1007/s00791-014-0232-9

    MATH  Google Scholar 

  39. A. Vogel, A. Calotoiu, A. Strubem, S. Reiter, A. Nägel, F. Wolf, G. Wittum, 10,000 performance models per minute – scalability of the UG4 simulation framework, in Euro-Par 2015, ed. by J. Träff, S. Hunold, F. Versaci, vol. 9233 (2015), pp. 519–531. https://doi.org/10.1007/978-3-662-48096-0

  40. A. Vogel, A. Calotoiu, A. Nägel, S. Reiter, A. Strube, G. Wittum, F. Wolf, Automated performance modeling of the UG4 simulation framework, in Software for Exascale Computing - SPPEXA 2013–2015, ed. by H. Bungartz, P. Neumann, W.E. Nagel. Lecture Notes in Computational Science and Engineering, vol. 113 (Springer, Cham, 2016), pp. 467–481. https://doi.org/10.1007/978-3-319-40528-5_21

  41. H. Weking, J. Schlottke, M. Boger, C.D. Munz, B. Weigand, DNS of rising bubbles using VOF and balanced force surface tension, in High Performance Computing on Vector Systems (Springer, Berlin, 2010)

    Google Scholar 

  42. C. Zhu, M. Ertl, B. Weigand, Effect of Reynolds number on the primary jet breakup of inelastic non-newtonian fluids from a duplex nozzle using direct numerical simulation (DNS), in ILASS 2013 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledge the High Performance Computing Center Stuttgart (HLRS) for support and supply of computational time on the Cray XC40 platform under the Grant No. FS3D/11142 and the financial support by the Deutsche Forschungsgemeinschaft (DFG) for the Collaborative Research Center SFB-TRR75.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Ertl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ertl, M., Reutzsch, J., Nägel, A., Wittum, G., Weigand, B. (2018). Towards the Implementation of a New Multigrid Solver in the DNS Code FS3D for Simulations of Shear-Thinning Jet Break-Up at Higher Reynolds Numbers. In: Nagel, W., Kröner, D., Resch, M. (eds) High Performance Computing in Science and Engineering ' 17 . Springer, Cham. https://doi.org/10.1007/978-3-319-68394-2_16

Download citation

Publish with us

Policies and ethics