Skip to main content

Gas Turbine Fuels and Fuel Systems

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Fossil fuels, especially oil and gas, are the major sources of heat for conventional gas turbines. The heating value of a fuel (Hf) is one of the most important factors to consider when choosing a fuel. Traditionally, gas turbines operate on high calorific fuels such as natural gas (Hf = 39–46 MJ kg−1) and Diesel no. 2 fuel oil (Hf = 42 MJ kg−1). A recent estimation of the reserves of fossil fuels shows that the production of these fuels will be constrained by the projected reserves. Consequently, there is a need to find alternative sources of energy, and biofuels are promising to be a sustainable option of supplying energy. Combustibility of biofuels has been demonstrated at laboratory and pilot scales. Nevertheless, combustion difficulties such as atomization and emission of NOx are still challenges to the wide-exploitation of biofuels in the gas turbine engines with the present combustion features. Nuclear energy is another possible source of heat for driving gas turbines but commercial nuclear power plants are commonly based on the steam Rankine cycle. Research work is going on in the area of high-temperature gas reactors for exploitation with closed cycle gas turbines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad A, Yasin N, Derek C, Lim J (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev 15:584–593

    Article  Google Scholar 

  • Al-attab K, Zainal Z (2015) Externally fired gas turbine technology: a review. Appl Energy 138:474–487

    Article  Google Scholar 

  • Alfaro-Ayala J, Gallegos-Muñoz A, Uribe-Ramírez A, Belman-Flores J (2013) Use of bioethanol in a gas turbine combustor. Appl Therm Eng 61:481–490

    Article  Google Scholar 

  • Ali Y, Hanna M, Leviticus L (1995) Emissions and power characteristics of diesel engines on methyl soyate and diesel fuel blends. Bioresour Technol 52:185–195

    Article  Google Scholar 

  • American Society of Heating, Refrigerating and Air-Conditioning Engineers (2001) Fundamentals handbook. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), Atlanta

    Google Scholar 

  • Anastopoulos G, Zannikou Y, Stournas S, Kalligeros S (2009) Transesterification of vegetable oils with ethanol and characterization of the key fuel properties of ethyl esters. Energies 2:362–376

    Article  Google Scholar 

  • Bailey B (1996) Performance of ethanol as a transportation fuel. In: Wyman C (ed) Handbook on bioethanol: production and utilization. Taylor & Francis, Bristol, pp 37–60

    Google Scholar 

  • Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86:2273–2282

    Article  Google Scholar 

  • Bergthorson J, Thomson MJ (2015) A review of the combustion and emission properties of advanced transportation biofuels and their impact on existing and future engines. Renew Sustain Energy Rev 42:1393–1417

    Article  Google Scholar 

  • Berka I, Edigerb VŞ (2016) Forecasting the coal production: Hubbert curve application on Turkey’s lignite fields. Resour Policy 50:193–203

    Article  Google Scholar 

  • Blakey S, Rye L, Wilson C (2011) Aviation gas turbine alternative fuels: a review. Combustion Institute

    Article  Google Scholar 

  • Boyce MP (2002) Gas turbine engineering handbook, 2nd edn. Gulf Professional Publishing, Boston

    Google Scholar 

  • Bradshaw A, Simms N, Nicholls J (2013) Hot corrosion tests on corrosion resistant coatings developed for gas turbines burning biomass and waste derived fuel gases. Surf Coat Technol 228:248–257

    Article  Google Scholar 

  • Brandt A (2010) Review of mathematical models of future oil supply: historical overview and synthesizing critique. Energy 35:3958–3974

    Article  Google Scholar 

  • Brethauer S, Wyman CE (2010) Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101:4862–4874

    Article  Google Scholar 

  • Breuhaus P (2013) Biogas production technologies. International Research Institute of Stavanger, Stavanger, Project number, p 7882727

    Google Scholar 

  • Bruno J, Ortega-López V, Coronas A (2009) Integration of absorption cooling systems into micro gas turbine trigeneration systems using biogas: case study of a sewage treatment plant. Appl Energy 86:837–847

    Article  Google Scholar 

  • Chen H (2014) Biotechnology of lignocellulose: theory and practice. Chemical Industry Press, Beijing

    Book  Google Scholar 

  • Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sustain Energy Rev 11:1056–1086

    Article  Google Scholar 

  • Chum H, Faaij A, Moreira J, Berndes G, Dhamija P, Dong H, Gabrielle B, Goss EA, Lucht W, Mapako M, Masera CO, McIntyre T, Minowa T, Pingoud K (2011) Bioenergy. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Matschoss P, Kadner S, Zwickel T, Eickemeier P, Hansen G, Schlömer S, Von Stechow C (eds) IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, New York, pp 209–332

    Chapter  Google Scholar 

  • Claassen PAM, Lopez Contreras AM, Sijtsma L, Weusthuis RA, Lier JB, Niel EWJ, Stams AJM, Vries SS (1999) Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol 52:741–755

    Article  Google Scholar 

  • Cuellar-Bermudez S, Garcia-Perez J, Rittmann B, Parra-Saldivar R (2015) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod 98:53–65

    Article  Google Scholar 

  • Demirbas A (2002) Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energy Sources 24:835–841

    Article  Google Scholar 

  • Demirbas A (2005) Bioethanol from cellulosic materials: a renewable motor fuel from biomass. Energy Sources Part A 27:327–337

    Article  Google Scholar 

  • Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50:14–34

    Article  Google Scholar 

  • Demirbas M (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480

    Article  Google Scholar 

  • El-Hossaini MK (2013) Review of the new combustion technologies in modern gas turbines. In: Benini E (ed) Progress in gas turbine performance. InTech Open, pp 145–164

    Google Scholar 

  • Faaij A (2006) Modern biomass conversion technologies. Mitig Adapt Strategies Glob Chang 11:343–375

    Article  Google Scholar 

  • Fagbohungbe OM, Herbert BMJ, Hurst L, Ibeto CN, Li H, Usmani SQ, Semple KT (2017) The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion. Waste Manag 61:236–249

    Article  Google Scholar 

  • Francisco È, Neves D, Jacob-Lopes E, Franco T (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403

    Article  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59:618–628

    Article  Google Scholar 

  • Ghani W, Moghadam R, Salleh M, Alias A (2009) Air gasification of agricultural waste in a fluidized bed gasifier: hydrogen production performance. Energies 2:258–268

    Article  Google Scholar 

  • Gonzalez J, Roman S, Bragado D, Calderon M (2008) Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production. Fuel Process Technol 89(8):764–772

    Article  Google Scholar 

  • Gupta K, Rehman A, Sarviya R (2010a) Bio-fuels for the gas turbine: a review. Renew Sustain Energy Rev 14:2946–2955

    Article  Google Scholar 

  • Gupta K, Rehman A, Sarviya R (2010b) Evaluation of soya bio-diesel as a gas turbine fuel. Iranica J Energy Environ 1(3):205–210

    Google Scholar 

  • Habib Z, Parthasarathy R, Gollahalli S (2010) Performance and emission characteristics of biofuel in a small-scale gas turbine engine. Appl Energy 87:1701–1709

    Article  Google Scholar 

  • Hashimoto N, Ozawa Y, Mor N, Yuri Y, Hisamatsu T (2008) Fundamental combustion characteristics of palm methyl ester (PME) as alternative fuel for gas turbines. Fuel 87:3373–3378

    Article  Google Scholar 

  • Hosseini S, Wahid M (2014) Development of biogas combustion in combined heat and power generation. Renew Sustain Energy Rev 40:868–875

    Article  Google Scholar 

  • Huang GH, Chen F, Wei D, Zhang XW, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    Article  Google Scholar 

  • International Energy Agency (2016) IEA bioenergy countries’ report: bioenergy policies and status of implementation. International Energy Agency (IEA), Paris

    Google Scholar 

  • International Organization of Standardization (2013) Standard 4261: Petroleum products-fuels (class F)—specifications of gas turbine fuels for industrial and marine applications. International Organization of Standardization (ISO), Geneva

    Google Scholar 

  • Juste G, Monfort J (2000) Preliminary test on combustion of wood derived fast pyrolysis oils in a gas turbine combustor. Biomass Bioenergy 19:119–128

    Article  Google Scholar 

  • Kalhor AX, Mohammadi-Nassab AD, Abedi E, Bahrami A, Movafeghi A (2016) Biodiesel production in crude oil contaminated environment using Chlorella vulgaris. Biores Technol 222:190–194

    Article  Google Scholar 

  • Kalhora AX, Movafeghia A, Mohammadi-Nassabb AD, Ehsan Abedic E, Bahramid A (2017) Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Mar Pollut Bull 123:286–290

    Article  Google Scholar 

  • Kamiński W, Tomczak E, Górak A (2011) Biobutanol—production and purification methods. Ecol Chem Eng 18(1):31–37

    Google Scholar 

  • Kang D, Kim T, Hur K, Park J (2012) The effect of firing biogas on the performance and operating characteristics of simple and recuperative cycle gas turbine combined heat and power systems. Appl Energy 93:215–228

    Article  Google Scholar 

  • Kang J, Kang D, Kim T, Hur K (2014a) Comparative economic analysis of gas turbine-based power generation and combined heat and power systems using biogas fuel. Energy 67:309–318

    Article  Google Scholar 

  • Kang JY, Kang DW, Kim TS, Hur KB (2014b) Economic evaluation of biogas and natural gas co-firing in gas turbine combined heat and power systems. Appl Therm Eng 70:723–731

    Article  Google Scholar 

  • Koizumi T (2015) Biofuels and food security. Renew Sustain Energy Rev 52:829–841

    Article  Google Scholar 

  • Lai D, Jin-Hui Zhan JH, Tian Y, Gao S, Xu G (2017) Mechanism of kerogen pyrolysis in terms of chemical structure transformation. Fuel 199:504–511

    Article  Google Scholar 

  • Lee M, Seo SB, Chung JH, Kim SM, Joo YJ, Ahn DH (2010) Gas turbine combustion performance test of hydrogen and carbon monoxide synthetic gas. Fuel 89:1485–1491

    Article  Google Scholar 

  • Lee MC, Seo SB, Yoon J, Kim M, Yoon Y (2012) Experimental study on the effect of N2, CO2, and steam dilution on the combustion performance of H2 and CO synthetic gas in an industrial gas turbine. Fuel 102:431–438

    Article  Google Scholar 

  • Lim M, Alimuddin Z (2008) Bubbling fluidized bed biomass gasification—performance, process findings and energy analysis. Renew Energy 33:2339–2343

    Article  Google Scholar 

  • MacLean H, Lave L (2003) Evaluating automobile fuel/propulsion system technologies. Prog Energy Combust Sci 29:1–69

    Article  Google Scholar 

  • Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 31:3362–3380

    Article  Google Scholar 

  • Mendez C, Parthasarathy R, Gollahalli S (2014) Performance and emission characteristics of butanol/Jet A blends in a gas turbine engine. Appl Energy 118:135–140

    Article  Google Scholar 

  • Mohr SH, Wang J, Ellem G, Ward J, Giurco D (2015) Projection of world fossil fuels by country. Fuel 141:120–135

    Article  Google Scholar 

  • Naik S, Gou V, Rout P, Dalai A (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597

    Article  Google Scholar 

  • Ngô C, Natowitz J (2009) Our energy future: resources, alternatives, and the environment. Wiley, New Jersey

    Book  Google Scholar 

  • Oasmaa A, Kuoppala E, Solantausta Y (2003) Fast pyrolysis of forestry residue 2: physicochemical composition of product liquid. Energy Fuels 17(2):433–443

    Article  Google Scholar 

  • Okoroigwe E, Ibeto C, Okpara C (2010) Comparative study of the potential of dog waste for biogas production. Trends Appl Sci Res 5(1):71–77

    Article  Google Scholar 

  • Olumayegun O, Wang M, Kelsall G (2016) Closed-cycle gas turbine for power generation: a state-of-the-art review. Fuel 180:694–717

    Article  Google Scholar 

  • Oparaku N, Ofomatah A, Okoroigwe E (2013) Biodigestion of cassava peels blended with pig dung for methane generation. Afr J Biotechnol 12(40):5956–5961

    Article  Google Scholar 

  • Ozyuguran A, Akturk A, Yaman S (2018) Optimal use of condensed parameters of ultimate analysis to predict the calorific value of biomass. Fuel 214:640–646

    Article  Google Scholar 

  • Patil V, Tran KQ, Giselrod HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9:1188–1195

    Article  Google Scholar 

  • Patra J, Ghose P, Datta A, Das M, Ganguly R, Sen S, Chatterjee S (2015) Studies of combustion characteristics of kerosene ethanol blends in an axi-symmetric combustor. Fuel 144:205–213

    Article  Google Scholar 

  • Rehman A, Phalke D, Pandey R (2011) Alternative fuel for gas turbine: esterified jatropha oil-diesel blend. Renew Energy 36:2635–2640

    Article  Google Scholar 

  • Saha B (2000) Alpha-L-Arabinofuranosidases: biochemistry, molecular biology and application in biotechnology. Biotechnol Adv 18(5):403–423

    Article  MathSciNet  Google Scholar 

  • Salehnasab B, Poursaeidi E, Mortazavi S, Farokhian G (2016) Hot corrosion failure in the first stage nozzle of a gas turbine engine. Eng Fail Anal 60:316–325

    Article  Google Scholar 

  • Sannigrahi P, Ragauskas A, Miller S (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in Loblolly Pine. Bioenerg Resources 1:205–214

    Article  Google Scholar 

  • Schuchardt U, Sercheli R, Vargas R (1998) Transesterification of vegetable oils: a review. J Braz Chem Soc 9(1):199–210

    Google Scholar 

  • Seljak T, Širok B, Katrašnik T (2016) Advanced fuels for gas turbines: fuel system corrosion, hot path deposit formation and emissions. Energy Convers Manag 125:40–50

    Article  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753

    Article  Google Scholar 

  • Tan E, Liou W (2011) Micro gas turbine engine characteristics using biofuel. The Hilltop Rev 5(1):40–50

    Google Scholar 

  • Ulbig P, Hoburg D (2002) Determination of the calorific value of natural gas by different methods. Thermochim Acta 382:27–35

    Article  Google Scholar 

  • Wang L, Weller C, Jones D, Hanna M (2008) Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production. Biomass Bioenergy 32:573–581

    Article  Google Scholar 

  • Wingren A, Galbe M, Roslander C, Rudolf A, Zacchi G (2005) Effect of reduction in yeast and enzyme concentrations in a simultaneous saccharification and-fermentation-based bioethanol process. Appl Biochem Biotechnol 122:485–499

    Article  Google Scholar 

  • Ye S, Jiayang C (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amos Madhlopa .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Madhlopa, A. (2018). Gas Turbine Fuels and Fuel Systems. In: Principles of Solar Gas Turbines for Electricity Generation. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-68388-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68388-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68387-4

  • Online ISBN: 978-3-319-68388-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics