Skip to main content

A Classical q-Hypergeometric Approach to the \(A_2^{(2)}\) Standard Modules

  • Conference paper
  • First Online:
Book cover Analytic Number Theory, Modular Forms and q-Hypergeometric Series (ALLADI60 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 221))

Included in the following conference series:

Abstract

This is a written expansion of the talk delivered by the author at the International Conference on Number Theory in Honor of Krishna Alladi for his 60th Birthday, held at the University of Florida, March 17–21, 2016. Here, we derive Bailey pairs that give rise to Rogers–Ramanujan type identities, the product sides of which are known to be the principally specialized characters of the \(A_2^{(2)}\) standard modules \((\ell - 2i+2)\varLambda _0 + (i-1)\varLambda _1\) for any level \(\ell \), and \(i=1, 2\).

Dedicated to Krishna Alladi on the occasion of his 60th birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Alladi, G.E. Andrews, B. Gordon, Refinements and generalizations of Capparelli’s conjecture on partitions. J. Algebra 174, 636–658 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. A.K. Agarwal, G.E. Andrews, D.M. Bressoud, The Bailey lattice. J. Indian Math. Soc. (N.S.) 51, 57–73 (1987)

    MathSciNet  MATH  Google Scholar 

  3. G.E. Andrews, An analytic generalization of the Rogers–Ramanujan identities for odd moduli. Proc. Nat. Acad. Sci. USA 71, 4082–4085 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. G.E. Andrews, Multiple series Rogers–Ramanujan type identities. Pac. J. Math. 114, 267–283 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. G.E. Andrews, Q-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, vol. 66, CBMS Regional Conferences Series in Mathematics (American Mathematical Society, Providence, 1986)

    MATH  Google Scholar 

  6. G.E. Andrews, Schur’s theorem, Capparelli’s conjecture and \(q\)-trinomial coefficients, The Rademacher legacy to mathematics (University Park, PA, 1992), vol. 166, Contemporary Mathematics (American Mathematical Society, Providence, 1994), pp. 141–154

    Chapter  Google Scholar 

  7. G.E. Andrews, R.J. Baxter, P.J. Forrester, Eight-vertex SOS model and generalized Rogers–Ramanujan type identities. J. Stat. Phys. 35, 193–266 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  8. W.N. Bailey, Series of hypergeometric type which are infinite in both directions. Quart. J. Math. (Oxford) 7, 105–115 (1936)

    Article  MATH  Google Scholar 

  9. W.N. Bailey, Identities of the Rogers–Ramanujan type. Proc. Lond. Math. Soc. 2(50), 1–10 (1949)

    MathSciNet  MATH  Google Scholar 

  10. B.C. Berndt, Number Theory in the Spirit of Ramanujan (American Mathematical Society, Providence, 2006)

    Book  MATH  Google Scholar 

  11. D.M. Bressoud, A generalization of the Rogers–Ramanujan identities for all moduli. J. Combin. Theory Ser. A 27, 64–68 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. D.M. Bressoud, Analytic and combinatorial generalizations of the Rogers–Ramanujan identities. Mem. Am. Math. Soc. 24(227), 1–54 (1980)

    MathSciNet  MATH  Google Scholar 

  13. K. Bringmann, K. Mahlburg, False theta functions and companions to Capparelli’s identities. Adv. Math. 278, 121–136 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Capparelli, Vertex operator relations for affine algebras and combinatorial identities. Ph.D. thesis, Rutgers University, 1988

    Google Scholar 

  15. S. Capparelli, A construction of the level \(3\) modules for the affine Lie algebra \(A^{(2)}_2\) and a new combinatorial identity of the Rogers–Ramanujan type. Trans. Am. Math. Soc. 348, 481–501 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen. Ers Teil (Teubner, Leipzig, 1916)

    MATH  Google Scholar 

  17. G. Gasper, M. Rahman, Basic Hypergeometric Series, 2nd edn. (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  18. B. Gordon, A combinatorial generalization of the Rogers–Ramanujan identities. Am. J. Math. 83, 393–399 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. K.E. Iverson, A Programming Language (Wiley, New York, 1962)

    Book  MATH  Google Scholar 

  20. V.G. Kac, Infinite Dimensional Lie Algebras, 3rd edn. (Cambridge University Press, Cambridge, 1990)

    Book  MATH  Google Scholar 

  21. V.G. Kac, D.A. Kazhdan, J. Lepowsky, R.L. Wilson, Realization of the basic representations of the Euclidean Lie algebras. Adv. Math. 42, 83–112 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. D.E. Knuth, Two notes on notation. Am. Math. Monthly 99, 403–422 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Lepowsky, S. Milne, Lie algebraic approaches to classical partition identities. Adv. Math. 29, 15–59 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Lepowsky, R.L. Wilson, Construction of the affine Lie algebra \(A_1^{(1)}\). Commun. Math. Phys. 62, 43–53 (1978)

    Article  MATH  Google Scholar 

  25. J. Lepowsky, R.L. Wilson, A Lie theoretic interpretation and proof of the Rogers–Ramanujan identities. Adv. Math. 45, 21–72 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Lepowsky, R.L. Wilson, The structure of standard modules I: universal algebras and the Rogers–Ramanujan identities. Invent. Math. 77, 199–290 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Lepowsky, R.L. Wilson, The structure of standard modules II: the case \(A_1^{(1)}\), principal gradation. Invent. Math. 79, 417–442 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  28. J. McLaughlin, A.V. Sills, Ramanujan–Slater type identities related to the moduli 18 and 24. J. Math. Anal. Appl. 344, 765–777 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Nandi, Partition identities arising from the standard \(A_2^{(2)}\) modules of level 4. Ph.D. thesis, Rutgers University, 2014

    Google Scholar 

  30. P. Paule, A. Riese, A Mathematica \(q\)-analogue of Zeilberger’s algorithm based on an algebraically motivated approach to \(q\)-hypergeometric telescoping, in Special Functions, \(q\)-Series and Related Topics. Fields Inst. Commun. 14, 179–210 (1997)

    MATH  Google Scholar 

  31. A.V. Sills, On series expansions of Capparelli’s infinite product. Adv. Appl. Math. 33, 397–408 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. A.V. Sills, Rademacher-type formulas for restricted partition and overpartition functions. Ramanujan J. 23, 253–264 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. L.J. Slater, A new proof of Rogers transformation of infinite series. Proc. Lond. Math. Soc. 2(53), 460–475 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  34. L.J. Slater, Further identities of the Rogers–Ramanujan type. Proc. Lond. Math. Soc. 2(54), 147–167 (1952)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Jim Lepowsky for assistance with the exposition and the referee for carefully reading the manuscript and providing a number of useful suggestions for improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew V. Sills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sills, A.V. (2017). A Classical q-Hypergeometric Approach to the \(A_2^{(2)}\) Standard Modules. In: Andrews, G., Garvan, F. (eds) Analytic Number Theory, Modular Forms and q-Hypergeometric Series. ALLADI60 2016. Springer Proceedings in Mathematics & Statistics, vol 221. Springer, Cham. https://doi.org/10.1007/978-3-319-68376-8_39

Download citation

Publish with us

Policies and ethics