Skip to main content

Fully Convolutional Networks for Surface Defect Inspection in Industrial Environment

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10528))

Included in the following conference series:

Abstract

In this paper, we propose a reusable and high-efficiency two-stage deep learning based method for surface defect inspection in industrial environment. Aiming to achieve trade-offs between efficiency and accuracy simultaneously, our method makes a novel combination of a segmentation stage (stage1) and a detection stage (stage2), which are consisted of two fully convolutional networks (FCN) separately. In the segmentation stage we use a lightweight FCN to make a spatially dense pixel-wise prediction to inference the area of defect coarsely and quickly. Those predicted defect areas act as the initialization of stage2, guiding the process of detection to refine the segmentation results. We also use an unusual training strategy: training with the patches cropped from the images. Such strategy has greatly utility in industrial inspection where training data may be scarce. We will validate our findings by analyzing the performance obtained on the dataset of DAGM 2007.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koch, C., Georgieva, K., Kasireddy, V., Akinci, B., Fieguth, P.: A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv. Eng. Inf. 29(2), 196–210 (2015)

    Article  Google Scholar 

  2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  3. Jian, C., Gao, J., Ao, Y.: Automatic surface defect detection for mobile phone screen glass based on machine vision. Appl. Soft Comput. 52, 348–358 (2017)

    Article  Google Scholar 

  4. Wells, L.J., Shafae, M.S., Camelio, J.A.: Automated surface defect detection using high-density data. J. Manuf. Sci. Eng. 138(7), 071001 (2016)

    Article  Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  6. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  7. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  8. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). doi:10.1007/978-3-319-10593-2_13

    Google Scholar 

  9. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4293–4302 (2016)

    Google Scholar 

  10. Bian, X., Lim, S.N., Zhou, N.: Multiscale fully convolutional network with application to industrial inspection. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV) pp. 1–8. IEEE (2016)

    Google Scholar 

  11. https://www.vidi-systems.com. Accessed 10 Apr 2017

  12. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  13. https://hci.iwr.uni-heidelberg.de/node/3616. Accessed 10 Apr 2017

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  15. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2528–2535. IEEE (2010)

    Google Scholar 

  16. Hou, L., Samaras, D., Kurc, T.M., Gao, Y., Davis, J.E., Saltz, J.H.: Patch-based convolutional neural network for whole slide tissue image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2424–2433 (2016)

    Google Scholar 

  17. Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  18. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yu, Z., Wu, X., Gu, X. (2017). Fully Convolutional Networks for Surface Defect Inspection in Industrial Environment. In: Liu, M., Chen, H., Vincze, M. (eds) Computer Vision Systems. ICVS 2017. Lecture Notes in Computer Science(), vol 10528. Springer, Cham. https://doi.org/10.1007/978-3-319-68345-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68345-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68344-7

  • Online ISBN: 978-3-319-68345-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics