Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 679))

Abstract

The paper proposes the approach to uniformly present complicated objects and processes with a variable structure. The approach is based on the approximation of specific models, describing the object or the process by a uniformed remodeling class. The application of this approach is useful while solving optimization and control problems. Neural network models, which proved their high approximating capability, are suggested as a remodelling class. Applying the given approach is considered on the example of modelling of inertial torque transformer (ITT) workflow. This process has a cyclical pattern, where each phase of the cycle is divided into four segments, described by various systems of nonlinear differential equations with the same parameters. Moreover, the solution to the system describing the next segment depends on the solution to the system obtained by the previous segment. It noticeably makes it difficult to determine the optimum ITT parameters, as the fit function has the solution to the system of equations, describing the last, fourth segment of the cycle. The neural network model allows simplifying the solution to the given problem for each segment of the cycle. The input layer of the remodelling neural network was supplemented by taking into account the real output values from the previous moments of time. The neural network with such kind of structure demonstrated high level of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leonov, A.I.: Inertsionnyie avtomaticheskie transformatoryi vraschayuschego momenta. [Inertial automatic torque transformers]. Mashinostroenie Science Publ., Moscow (1978)

    Google Scholar 

  2. Bazhenov, S.P.: Besstupenchatyie peredachi tyagovyih i transportnyih mashin. [Infinitely variable transmission of traction and transport vehicles]. Lipetsk State Technical University Publ. (2003)

    Google Scholar 

  3. Maltsev, V.F.: Mehanicheskie impulsnyie peredachi. [Mechanic pulse transmission]. Mashinostroenie Science Publ., Moscow (1978)

    Google Scholar 

  4. Sysoev, A.S.: Modelirovanie i optimizatsiya sistem s peremennoy strukturoy metodami idempotentnoy matematiki i analiza konechnyh izmeneniy. [Modelling and optimization of variable structure systems using methods of idempotent mathematics and analysis of finite fluctuations]. Ph.D. thesis. Voronezh State Technical University (2014)

    Google Scholar 

  5. Galkin, A.V.: Matematicheskoe modelirovanie i optimizatsiya rabochego protsessa inertsionnogo transformatora vraschayuschego momenta. [Mathematical simulation and optimization of workflow of the inertial torque transformer]. Controlling system and information technology (2008)

    Google Scholar 

  6. Galkin, A.V.: Optimizatsiya rabotyi slozhnyih dinamicheskih sistem. [Complex dynamic systems optimization]. Vesti vyshih uchebnyh zavedeni. 1(27) (2012)

    Google Scholar 

  7. Bazhenov, S.P., Blyumin S.L., Galkin, A.V.: Zadacha optimizatsii rabochego protsessa inertsionnogo transformatora vraschayuschego momenta. [The object of optimization of workflow of the inertial torque transformer]. Uspehi sovremennogo estestvoznaniya. 6 (2006)

    Google Scholar 

  8. Blyumin, S.L., Baryshev, V.G., Kotsar, S.L., Polyakov, B.A.: Primenenie nesimmetrichnogo ortogonalnogo planirovaniya pri issledovanii protsessov prokatki. [Supplementing of asymmetric orthogonal planning while exploration of the operation of rolling]. Primenenie EVM v metallurgii. Proceedings of the first All-Union Technical Conference. MISA (1973)

    Google Scholar 

  9. Kuleshov, A.P., Bernstein, A.V., Burnaev, E.V.: Adaptive models of complex systems based on data handling. In: Proceedings of the 3rd International Conference on Inductive Modelling, Kyiv, Ukraine (2010)

    Google Scholar 

  10. Kuznetsov, L.A., Domashnev, P.A.: Neyrosetevyie modeli dlya opisaniya slozhnyih tehnologicheskih protsessov [Neural models for describing complex technological processes]. Problemy upravleniya. 1 (2004)

    Google Scholar 

  11. Blyumin, S.L., Galkin, A.V., Saraev, P.V., Sysoev, A.S.: Interval cyclic hypergraphs for modeling of transportation systems. In: Proceedings of the Second International Conference on Traffic and Transport Engineering ICTTE (2014)

    Google Scholar 

  12. Ossowski, S.: Active Parametric Modification of Linear Vibrating Systems, Smart Structures, 3. High Technology, vol. 65 (1998)

    Google Scholar 

  13. Ossowski, S.: Neural networks for information processing. Publishing House of Warsaw University of Technology (2000)

    Google Scholar 

  14. Ossowski, S.: Sieci neuronowe do przetwarzania informacji. Warsaw, Poland, Of. Ed. Pol. (in Polish). (Russ. ed.: Osovskiy S. Neyronnye seti dlya obrabotki informatsii) [Neural networks for information processing]. Finansy i statistika Publ., Moscow (2002)

    Google Scholar 

  15. Haykin, S.: Neural Networks and Learning Machines, 3rd edn. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  16. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  17. Saraev, P.V.: Superpozitsionnoe lineyno-nelineynoe neirostrukturnoe modelirovanie. [Superimposed linear-nonlinear neurostructural modelling]. Doctor degree dissertation. Voronezh State Technical University (2013)

    Google Scholar 

  18. Saraev, P.V.: Numerical methods of interval analysis in learning neural network. Autom. Remote Control 73(11), 1865–1876 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Galkin, A.V.: Modelirovanie inertsialno-impulsnyh objektov sostavnymi sisyemami differentsialnyh uravneniy [Modelling inertial impulse objects using composite systems of differential equations]. Ph.D. thesis, Voronezh State Technical University (2008)

    Google Scholar 

  20. Package “nnet”. CRAN R-Documentation. https://cran.r-project.org/web/packages/nnet/nnet.p

Download references

Acknowledgements

The reported study was funded by RFBR and Lipetsk region according to the research project No. 17-47-480305-r_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Sysoev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Saraev, P.V., Blyumin, S.L., Galkin, A.V., Sysoev, A.S. (2018). Neural Remodelling of Objects with Variable Structures. In: Abraham, A., Kovalev, S., Tarassov, V., Snasel, V., Vasileva, M., Sukhanov, A. (eds) Proceedings of the Second International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’17). IITI 2017. Advances in Intelligent Systems and Computing, vol 679. Springer, Cham. https://doi.org/10.1007/978-3-319-68321-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68321-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68320-1

  • Online ISBN: 978-3-319-68321-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics