Skip to main content

Climate Change Trends for Chaparral

  • Chapter
  • First Online:
Valuing Chaparral

Abstract

Chaparral vegetation is a dominant and unique feature of California’s Mediterranean-type climate. The evergreen shrubs that characterize chaparral are well adapted to long, hot, dry summers and extreme fluctuations in inter-annual precipitation. Despite the ability of chaparral species to tolerate climatic extremes, the integrity of the chaparral ecosystem is currently being challenged by rising temperatures, increased variability in precipitation, and longer and more persistent droughts. Climate scenarios for California project continued warming through the century leading to increased physiological stress, canopy thinning, and mortality of chaparral vegetation across portions of the state. In some instances, however, chaparral vegetation may expand into forested landscapes. Climate change forecasts suggest enhanced fire activity, including an extended fire season and more frequent large fires. In this already stressed system, non-climate stressors, like increased fire frequencies, can lead to decreased shrub biomass, loss of species diversity, and conversion to other vegetation types. Chaparral in southern California is already trending toward conversion to dominance by non-native annual grasses, and climate projections suggest that this trend will continue in the future. In this chapter, we evaluate historical and projected climate trends in California and explain how they might directly and indirectly affect the integrity and persistence of chaparral on the landscape. We show that the interaction of climate and non-climate stressors can drive landscape level conversion of shrublands to non-native annual grasses leading to the loss of social and ecological benefits provided by the ecosystem. We provide a detailed review of projected changes in carbon storage for one of the (under-valued) ecosystem services provided by chaparral. We conclude by highlighting key management lessons from our review, and point to a few high priority information gaps that must be filled by future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abatzoglou, J. T., and A. P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences 113:11770-11775.

    Article  CAS  Google Scholar 

  • Ackerly, D. A., W. K. Cornwell, S. B. Weiss, L. E. Flint, and A. L. Flint. 2015. A geographic mosaic of climate change impacts on terrestrial vegetation: which areas are most at risk? PLoS ONE 10:e0130629.

    Article  Google Scholar 

  • Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, and E. T. Hogg. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660-684.

    Article  Google Scholar 

  • Bachelet, D. 2001. MC1, a dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water. General Technical Report PNW-GTR-508. Corvallis, Oregon, USA, USDA Forest Service, Pacific Northwest Research Station.

    Google Scholar 

  • Beyers, J. L., and C. D. Wakeman. 2000. Season of burn effects in southern California chaparral. Pages 45-56 in J. E. Keeley, M. Baer-Keeley, and C. J. Fotheringham, editors. Second interface between ecology and land development in California. US Geological Survey Open-File Report 00-62. US Geological Survey, Sacramento, California, USA.

    Google Scholar 

  • Bradley, B. A., R. Houghton, J. F. Mustard, and S. P. Hamburg. 2006. Invasive grass reduces aboveground carbon stocks in shrublands of the western US. Global Change Biology 12:1815-1822.

    Article  Google Scholar 

  • Brown, T. J., C. A. Kolden, and J. T. Abatzoglou. 2012. Assessing fuels treatments in southern California National Forests in the context of climate change. Joint Fire Science Program Research Report. http://digitalcommons.unl.edu/jfspresearch/30/

  • Callaway, R., and F. Davis. 1998. Recruitment of Quercus agrifolia in central California: the importance of shrub-dominated patches. Journal of Vegetation Science 9:647-656.

    Article  Google Scholar 

  • Cayan, D. R., E. P. Maurer, M. D. Dettinger, M. Tyree, and K. Hayhoe. 2008. Climate change scenarios for the California region. Climatic Change 87:21-42.

    Article  Google Scholar 

  • Chan, K. M., M. R. Shaw, D. R. Cameron, E. C. Underwood, and G. C. Daily. 2006. Conservation planning for ecosystem services. PLoS Biology 4:2138-2152.

    CAS  Google Scholar 

  • Chornesky, E. A., D. D. Ackerly, P. Beier, F. W. Davis, L. E. Flint, J. J. Lawler, P. B. Moyle, M. A. Moritz, M. Scoonover, and K. Byrd. 2015. Adapting California's ecosystems to a changing climate. BioScience 65:247-262.

    Article  Google Scholar 

  • Collins, M., R. Knutti, J. Arblaster, J. L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W. J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A. J. Weaver, and M. Wehner. 2013. Long-term climate change: projections, commitments and irreversibility. Pages 1029-1136 in T. G. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, editors. Climate change 2013: the physical science basis, Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Cornwell, W. K., S. A. Stuart, A. Ramirez, C. R. Dolanc, J. H. Thorne, and D. D. Ackerly. 2012. Climate change impacts on California vegetation: physiology, life history, and ecosystem change. California Energy Commission CEC-500-2002-023. Sacramento, California, USA.

    Google Scholar 

  • Cowling, R. M., P. W. Rundel, B. B. Lamont, M. K. Arroyo, and M. Arianoutsou. 1996. Plant diversity in Mediterranean-climate regions. Trends in Ecology & Evolution 11:362-366.

    Article  CAS  Google Scholar 

  • Daly, C., D. Bachelet, J. M. Lenihan, R. P. Neilson, W. Parton, and D. Ojima. 2000. Dynamic simulation of tree-grass interactions for global change studies. Ecological Applications 10:449-469.

    Google Scholar 

  • Davis, S. D., F. W. Ewers, J. S. Sperry, K. A. Portwood, M. C. Crocker, and G. C. Adams. 2002. Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. American Journal of Botany 89:820-828.

    Article  Google Scholar 

  • Davis, F. W., and J. Michaelsen. 1995. Sensitivity of fire regime in chaparral ecosystems to climate change. Pages 435-456 in J. M. Moreno and W. C. Oechel, editors. Global change and Mediterranean-type ecosystems. Springer, New York, New York, USA.

    Chapter  Google Scholar 

  • Dennison, P. E., S. C. Brewer, J. D. Arnold, and M. A. Moritz. 2014. Large wildfire trends in the western United States, 1984-2011. Geophysical Research Letters 41:2928-2933.

    Article  Google Scholar 

  • Dennison, P. E., and M. A. Moritz. 2009. Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation. International Journal of Wildland Fire 18:1021-1027.

    Article  Google Scholar 

  • Dettinger, M. D. 2005. From climate-change spaghetti to climate-change distributions for the 21st century California. San Francisco Estuary and Watershed Science 3:Article 4.

    Google Scholar 

  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan. 2011. Atmospheric rivers, floods and the water resources of California. Water 3:445-478.

    Article  Google Scholar 

  • Diffenbaugh, N. S., D. L. Swain, and D. Touma. 2015. Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences 112:3931-3936.

    Article  CAS  Google Scholar 

  • Fellows, A. W., and M. L. Goulden. 2012. Rapid vegetation redistribution in southern California during the early 2000s drought. Journal of Geophysical Research 117:G03025.

    Article  Google Scholar 

  • Field, C. B., G. C. Daily, F. W. Davis, S. Gaines, P. A. Matson, J. Melack, and N. L. Miller. 1999. Confronting climate change in California: ecological impacts on the golden state. A report of the Union of Concerned Scientists, Cambridge, Massachusetts and the Ecological Society of America, Washington D.C., USA.

    Google Scholar 

  • FRAP [Fire Resource and Assessment Program], California Department of Forestry and Fire Protection. 2015. FRAP vegetation geodatabase. http://frap.fire.ca.gov/data/frapgisdata-sw-fveg_download

  • Frazer, J., and S. Davis. 1988. Differential survival of chaparral seedlings during the first summer drought after wildfire. Oecologia 76:215-221.

    Article  CAS  Google Scholar 

  • Gonzalez, P., J. J. Battles, B. M. Collins, T. Robards, and D. S. Saah. 2015. Aboveground live carbon stock changes of California wildland ecosystems, 2001–2010. Forest Ecology and Management 348:68-77.

    Article  Google Scholar 

  • Griffin, D., and K. J. Anchukaitis. 2014. How unusual is the 2012–2014 California drought? Geophysical Research Letters 41:9017-9023.

    Article  Google Scholar 

  • Haidinger, T. L., and J. E. Keeley. 1993. Role of high fire frequency in destruction of mixed chaparral. Madroño 40:141-147.

    Google Scholar 

  • Hayhoe, K., D. Cayan, C. B. Field, P. C. Frumhoff, E. P. Maurer, N. L. Miller, S. C. Moser, S. H. Schneider, K. N. Cahill, and E. E. Cleland. 2004. Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences 101:12422-12427.

    Article  CAS  Google Scholar 

  • Hoekstra, J. M., T. M. Boucher, T. H. Ricketts, and C. Roberts. 2005. Confronting a biome crisis: global disparities of habitat loss and protection. Ecology Letters 8:23-29.

    Article  Google Scholar 

  • Holland, V., and D. J. Keil. 1995. California vegetation. Kendall/Hunt Publishing Company, Dubuque, Iowa, USA.

    Google Scholar 

  • Hughes, M., A. Hall, and J. Kim. 2011. Human-induced changes in wind, temperature and relative humidity during Santa Ana events. Climatic Change 109:119-132.

    Article  Google Scholar 

  • IPCC [Intergovernmental Panel on Climate Change]. 2007. Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change, Intergovernmental Panel on Climate Change, Geneva, Switzerland.

    Book  Google Scholar 

  • Jacobsen, A. L., R. B. Pratt, S. D. Davis, and F. W. Ewers. 2007a. Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant, Cell & Environment 30:1599-1609.

    Article  Google Scholar 

  • Jacobsen, A. L., R. B. Pratt, F. W. Ewers, and S. D. Davis. 2007b. Cavitation resistance among 26 chaparral species of southern California. Ecological Monographs 77:99-115.

    Article  Google Scholar 

  • Jin, Y., M. L. Goulden, N. Faivre, S. Veraverbeke, F. Sun, A. Hall, M. S. Hand, S. Hook, and J. T. Randerson. 2015. Identification of two distinct fire regimes in Southern California: implications for economic impact and future change. Environmental Research Letters 10:094005.

    Article  Google Scholar 

  • Jin, Y., J. T. Randerson, N. Faivre, S. Capps, A. Hall, and M. L. Goulden. 2014. Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds. Journal of Geophysical Research: Biogeosciences 119:432-450.

    Google Scholar 

  • Jones, M. B., and H. M. Laude. 1960. Relationships between sprouting in chamise and the physiological condition of the plant. Journal of Range Management 13:210-214.

    Article  CAS  Google Scholar 

  • Keeley, J. E. 1975. Longevity of nonsprouting Ceanothus. American Midland Naturalist 93:504-507.

    Article  Google Scholar 

  • Keeley, J. E., and C. Fotheringham. 2001. Historic fire regime in southern California shrublands. Conservation Biology 15:1536-1548.

    Article  Google Scholar 

  • Keeley, J. E., and H. D. Safford. 2016. Fire as an ecosystem process. Pages 27-45 in H. A. Mooney and E. Zavaleta, editors. Ecosystems of California. University of California Press, Berkeley, California, USA.

    Google Scholar 

  • Keeley, J. E., and A. D. Syphard. 2015. Different fire-climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion. International Journal of Wildland Fire 24:27-36.

    Article  Google Scholar 

  • Keeley, J. E., and A. D. Syphard. 2016. Climate change and future fire regimes: examples from California. Geosciences 6:37.

    Article  Google Scholar 

  • Keeley, J., and A. D. Syphard. 2017. Different historical fire-climate patterns in California. International Journal of Wildland Fire 26:253-268.

    Article  Google Scholar 

  • Keeley, J. E., and P. H. Zedler. 2009. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model. Ecological Applications 19:69-94.

    Article  Google Scholar 

  • Kelly, A. E., and M. L. Goulden. 2008. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences 105:11823-11826.

    Article  CAS  Google Scholar 

  • Kolb, K. J., and S. D. Davis. 1994. Drought tolerance and xylem embolism in co-occurring species of coastal sage and chaparral. Ecology 74:648-659.

    Article  Google Scholar 

  • Krawchuk, M. A., M. A. Moritz, M. A. Parisien, J. Van Dorn, and K. Hayhoe. 2009. Global pyrogeography: the current and future distribution of wildfire. PloS ONE 4:e5102.

    Article  Google Scholar 

  • Krawchuk, M. A., and M. A. Moritz. 2011. Constraints on global fire activity vary across a resource gradient. Ecology 92:121-132.

    Article  Google Scholar 

  • Lawson, D. M., H. M. Regan, P. H. Zedler, and J. Franklin. 2010. Cumulative effects of land use, altered fire regime and climate change on persistence of Ceanothus verrucosus, a rare, fire‐dependent plant species. Global Change Biology 16:2518-2529.

    Google Scholar 

  • Lenihan, J. M., D. Bachelet, R. P. Neilson, and R. Drapek. 2008. Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California. Climatic Change 87:215-230.

    Article  Google Scholar 

  • Lenihan, J. M., R. Drapek, D. Bachelet, and R. P. Neilson. 2003. Climate change effects on vegetation distribution, carbon, and fire in California. Ecological Applications 13:1667-1681.

    Article  Google Scholar 

  • Littell, J. S., D. McKenzie, D. L. Peterson, and A. L. Westerling. 2009. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications 19:1003-1021.

    Article  Google Scholar 

  • Loarie, S. R., B. E. Carter, K. Hayhoe, S. McMahon, R. Moe, C. A. Knight, and D. D. Ackerly. 2008. Climate change and the future of California's endemic flora. PLoS ONE 3:e2502.

    Article  Google Scholar 

  • Luo, H., W. C. Oechel, S. J. Hastings, R. Zulueta, Y. Qian, and H. Kwon. 2007. Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide. Global Change Biology 13:386-396.

    Article  Google Scholar 

  • Mahall, B., and C. Wilson. 1986. Environmental induction and physiological consequences of natural pruning in the chaparral shrub Ceanothus megacarpus. Botanical Gazette 147:102-109.

    Article  Google Scholar 

  • Mann, M. E., and P. H. Gleick. 2015. Climate change and California drought in the 21st century. Proceedings of the National Academy of Sciences 112:3858-3859.

    Article  CAS  Google Scholar 

  • Meentemeyer, R. K., A. Moody, and J. Franklin. 2001. Landscape-scale patterns of shrub-species abundance in California chaparral-the role of topographically mediated resource gradients. Plant Ecology 156:19-41.

    Article  Google Scholar 

  • Melillo, J. M., T. T. Richmond, and G. Yohe. 2014. Climate change impacts in the United States: the third national climate assessment, US Global Change Research Program, Washington D.C., USA. http://nca2014.globalchange.gov/downloads

    Google Scholar 

  • Miles, S. R., and C. B. Goudey. 1997. Ecological subregions of California: section and subsection descriptions. R5-EM-TP-005. San Fransisco, California, USA, USDA Forest Service, Pacific Southwest Region.

    Google Scholar 

  • Miller, N. L., and N. J. Schlegel. 2006. Climate change projected fire weather sensitivity: California Santa Ana wind occurrence. Geophysical Research Letters 33:15.

    Google Scholar 

  • Molinari, N. A., S. C. Sawyer, and H. D. Safford. 2016. A summary of current trends and probable future trends in climate and climate-driven processes in the Cleveland National Forest and neighboring lands. USDA Forest Service, Pacific Southwest Region, Vallejo, California, USA. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd497636.pdf

  • Mooney, H. A., and C. Chu. 1974. Seasonal carbon allocation in Heteromeles arbutifolia, a California evergreen shrub. Oecologia 14:295-306.

    Article  CAS  Google Scholar 

  • Mooney, H., B. Drake, R. Luxmoore, W. Oechel, and L. Pitelka. 1991. Predicting ecosystem responses to elevated CO2 concentrations. BioScience 41:96-104.

    Article  Google Scholar 

  • Paddock III, W. A., S. D. Davis, R. B. Pratt, A. L. Jacobsen, M. F. Tobin, J. López-Portillo, and F. W. Ewers. 2013. Factors determining mortality of adult chaparral shrubs in an extreme drought year in California. Aliso: A Journal of Systematic and Evolutionary Botany 31:49-57.

    Article  Google Scholar 

  • Parsons, D. J., P. W. Rundel, R. P. Hedlund, and G. A. Baker. 1981. Survival of severe drought by a non-sprouting chaparral shrub. American Journal of Botany 68:973-979.

    Article  Google Scholar 

  • Pausas, J. G., and J. E. Keeley. 2014a. Abrupt climate-independent fire regime changes. Ecosystems 17:1109-1120.

    Article  CAS  Google Scholar 

  • Pausas, J. G., and J. E. Keeley. 2014b. Evolutionary ecology of resprouting and seeding in fire‐prone ecosystems. New Phytologist 204:55-65.

    Article  Google Scholar 

  • Pausas, J. G., and S. Paula. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecology and Biogeography 21:1074-1082.

    Article  Google Scholar 

  • Pausas, J. G., R. B. Pratt, J. E. Keeley, A. L. Jacobsen, A. R. Ramirez, A. Vilagrosa, S. Paula, I. N. Kaneakua‐Pia, and S. D. Davis. 2016. Towards understanding resprouting at the global scale. New Phytologist 209:945-954.

    Article  Google Scholar 

  • Pratt, R., A. Jacobsen, K. Golgotiu, J. Sperry, F. Ewers, and S. Davis. 2007. Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecological Monographs 77:239-253.

    Article  Google Scholar 

  • Pratt, R., A. Jacobsen, R. Mohla, F. Ewers, and S. Davis. 2008. Linkage between water stress tolerance and life history type in seedlings of nine chaparral species (Rhamnaceae). Journal of Ecology 96:1252-1265.

    Article  Google Scholar 

  • Pratt, R. B., A. L. Jacobsen, J. Hernandez, F. W. Ewers, G. B. North, and S. D. Davis. 2012. Allocation tradeoffs among chaparral shrub seedlings with different life history types (Rhamnaceae). American Journal of Botany 99:1464-1476.

    Article  Google Scholar 

  • Pratt, R. B., A. L. Jacobsen, A. R. Ramirez, A. M. Helms, C. A. Traugh, M. F. Tobin, M. S. Heffner, and S. D. Davis. 2014. Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Global Change Biology 20:893-907.

    Article  Google Scholar 

  • Price, C., and D. Rind. 1994. The impact of a 2× CO2 climate on lightning-caused fires. Journal of Climate 7:1484-1494.

    Article  Google Scholar 

  • Ramirez, A., R. Pratt, A. Jacobsen, and S. Davis. 2012. Exotic deer diminish post-fire resilience of native shrub communities on Santa Catalina Island, southern California. Plant Ecology 213:1037-1047.

    Article  Google Scholar 

  • Rapacciuolo, G., S. P. Maher, A. C. Schneider, T. T. Hammond, M. D. Jabis, R. E. Walsh, K. J. Iknayan, G. K. Walden, M. F. Oldfather, and D. D. Ackerly. 2014. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. Global Change Biology 20:2841-2855.

    Article  Google Scholar 

  • Restaino, C. R., and H. D. Safford. 2018. Fire and climate change. Pages 493-505 in J. W. van Wagtendonk, N. G. Sugihara, S. L. Stephens, A. E. Thode, K. E. Shaffer, and J. A. Fites-Kaufman, editors. Fire in California’s ecosystems. Second edition. University of California Press, Berkeley, California, USA.

    Google Scholar 

  • Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj. 2011. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Climatic Change 109:33-57.

    Article  CAS  Google Scholar 

  • Riordan, E. C., and P. W. Rundel. 2014. Land use compounds habitat losses under projected climate change in a threatened California ecosystem. PloS ONE 9:e86487.

    Article  Google Scholar 

  • Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, and A. Kinzig. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770-1774.

    Article  CAS  Google Scholar 

  • Saruwatari, M., and S. Davis. 1989. Tissue water relations of three chaparral shrub species after wildfire. Oecologia 80:303-308.

    Article  CAS  Google Scholar 

  • Sawyer, S. C., J. Hooper, and H. D. Safford. 2014. A summary of current trends and probable future trends in climate and climate-driven processes for the Angeles and San Bernardino National Forests. USDA Forest Service, Pacific Southwest Region, Vallejo, California, USA. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5445379.pdf

  • Schlesinger, W. H., J. T. Gray, D. S. Gill, and B. E. Mahall. 1982. Ceanothus megacarpus chaparral: a synthesis of ecosystem processes during development and annual growth. Botanical Review 48:71-117.

    Article  Google Scholar 

  • Schwilk, D. W., and J. E. Keeley. 2012. A plant distribution shift: temperature, drought or past disturbance. PLoS ONE 7:e31173.

    Article  CAS  Google Scholar 

  • Shaw, M. R., L. Pendleton, D. R. Cameron, B. Morris, D. Bachelet, K. Klausmeyer, J. MacKenzie, D. R. Conklin, G. N. Bratman, and J. Lenihan. 2011. The impact of climate change on California’s ecosystem services. Climatic Change 109:465-484.

    Article  Google Scholar 

  • Steel, Z. L., H. D. Safford, and J. H. Viers. 2015. The fire frequency‐severity relationship and the legacy of fire suppression in California forests. Ecosphere 6:1-23.

    Article  Google Scholar 

  • Syphard, A. D., V. C. Radeloff, J. E. Keeley, T. J. Hawbaker, M. K. Clayton, S. I. Stewart, and R. B. Hammer. 2007. Human influence on California fire regimes. Ecological Applications 17:1388-1402.

    Article  Google Scholar 

  • Thomas, C., and S. Davis. 1989. Recovery patterns of three chaparral shrub species after wildfire. Oecologia 80:309-320.

    Article  CAS  Google Scholar 

  • Thrasher, B., J. Xiong, W. Wang, F. Melton, A. Michaelis, and R. Nemani. 2013. Downscaled climate projections suitable for resource management. Eos, Transactions American Geophysical Union 94:321-323.

    Article  Google Scholar 

  • Tyler, C. M., D. C. Odion, and R. M. Callaway. 2007. Dynamics of woody species in the California grassland. Pages 169-179 in M. Stromberg, J. Corbin, and C. D'Antonio, editors. California Grasslands Ecology and Management. University of California Press, Berkeley, California, USA.

    Google Scholar 

  • Underwood, E. C., J. H. Viers, K. R. Klausmeyer, R. L. Cox, and M. R. Shaw. 2009. Threats and biodiversity in the mediterranean biome. Diversity and Distributions 15:188-197.

    Article  Google Scholar 

  • van Mantgem, P. J., J. C. Nesmith, M. Keifer, E. E. Knapp, A. Flint, and L. Flint. 2013. Climatic stress increases forest fire severity across the western United States. Ecology Letters 16:1151-1156.

    Article  Google Scholar 

  • Westerling, A. L. 2016. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philosophical Transactions of the Royal Society of London B: Biological Sciences 371:20150178.

    Article  Google Scholar 

  • Westerling, A., and B. Bryant. 2008. Climate change and wildfire in California. Climatic Change 87:231-249.

    Article  Google Scholar 

  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313:940-943.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole A. Molinari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molinari, N.A., Underwood, E.C., Kim, J.B., Safford, H.D. (2018). Climate Change Trends for Chaparral. In: Underwood, E., Safford, H., Molinari, N., Keeley, J. (eds) Valuing Chaparral. Springer Series on Environmental Management. Springer, Cham. https://doi.org/10.1007/978-3-319-68303-4_14

Download citation

Publish with us

Policies and ethics