Advertisement

Climate Change Trends for Chaparral

  • Nicole A. Molinari
  • Emma C. Underwood
  • John B. Kim
  • Hugh D. Safford
Chapter
Part of the Springer Series on Environmental Management book series (SSEM)

Abstract

Chaparral vegetation is a dominant and unique feature of California’s Mediterranean-type climate. The evergreen shrubs that characterize chaparral are well adapted to long, hot, dry summers and extreme fluctuations in inter-annual precipitation. Despite the ability of chaparral species to tolerate climatic extremes, the integrity of the chaparral ecosystem is currently being challenged by rising temperatures, increased variability in precipitation, and longer and more persistent droughts. Climate scenarios for California project continued warming through the century leading to increased physiological stress, canopy thinning, and mortality of chaparral vegetation across portions of the state. In some instances, however, chaparral vegetation may expand into forested landscapes. Climate change forecasts suggest enhanced fire activity, including an extended fire season and more frequent large fires. In this already stressed system, non-climate stressors, like increased fire frequencies, can lead to decreased shrub biomass, loss of species diversity, and conversion to other vegetation types. Chaparral in southern California is already trending toward conversion to dominance by non-native annual grasses, and climate projections suggest that this trend will continue in the future. In this chapter, we evaluate historical and projected climate trends in California and explain how they might directly and indirectly affect the integrity and persistence of chaparral on the landscape. We show that the interaction of climate and non-climate stressors can drive landscape level conversion of shrublands to non-native annual grasses leading to the loss of social and ecological benefits provided by the ecosystem. We provide a detailed review of projected changes in carbon storage for one of the (under-valued) ecosystem services provided by chaparral. We conclude by highlighting key management lessons from our review, and point to a few high priority information gaps that must be filled by future research.

Keywords

Carbon storage Drought Dynamic Global Vegetation Model Fire regimes MC1 vegetation shifts Vulnerability 

References

  1. Abatzoglou, J. T., and A. P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences 113:11770-11775.CrossRefGoogle Scholar
  2. Ackerly, D. A., W. K. Cornwell, S. B. Weiss, L. E. Flint, and A. L. Flint. 2015. A geographic mosaic of climate change impacts on terrestrial vegetation: which areas are most at risk? PLoS ONE 10:e0130629.CrossRefGoogle Scholar
  3. Allen, C. D., A. K. Macalady, H. Chenchouni, D. Bachelet, N. McDowell, M. Vennetier, T. Kitzberger, A. Rigling, D. D. Breshears, and E. T. Hogg. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management 259:660-684.CrossRefGoogle Scholar
  4. Bachelet, D. 2001. MC1, a dynamic vegetation model for estimating the distribution of vegetation and associated ecosystem fluxes of carbon, nutrients, and water. General Technical Report PNW-GTR-508. Corvallis, Oregon, USA, USDA Forest Service, Pacific Northwest Research Station.Google Scholar
  5. Beyers, J. L., and C. D. Wakeman. 2000. Season of burn effects in southern California chaparral. Pages 45-56 in J. E. Keeley, M. Baer-Keeley, and C. J. Fotheringham, editors. Second interface between ecology and land development in California. US Geological Survey Open-File Report 00-62. US Geological Survey, Sacramento, California, USA.Google Scholar
  6. Bradley, B. A., R. Houghton, J. F. Mustard, and S. P. Hamburg. 2006. Invasive grass reduces aboveground carbon stocks in shrublands of the western US. Global Change Biology 12:1815-1822.CrossRefGoogle Scholar
  7. Brown, T. J., C. A. Kolden, and J. T. Abatzoglou. 2012. Assessing fuels treatments in southern California National Forests in the context of climate change. Joint Fire Science Program Research Report. http://digitalcommons.unl.edu/jfspresearch/30/
  8. Callaway, R., and F. Davis. 1998. Recruitment of Quercus agrifolia in central California: the importance of shrub-dominated patches. Journal of Vegetation Science 9:647-656.CrossRefGoogle Scholar
  9. Cayan, D. R., E. P. Maurer, M. D. Dettinger, M. Tyree, and K. Hayhoe. 2008. Climate change scenarios for the California region. Climatic Change 87:21-42.CrossRefGoogle Scholar
  10. Chan, K. M., M. R. Shaw, D. R. Cameron, E. C. Underwood, and G. C. Daily. 2006. Conservation planning for ecosystem services. PLoS Biology 4:2138-2152.Google Scholar
  11. Chornesky, E. A., D. D. Ackerly, P. Beier, F. W. Davis, L. E. Flint, J. J. Lawler, P. B. Moyle, M. A. Moritz, M. Scoonover, and K. Byrd. 2015. Adapting California's ecosystems to a changing climate. BioScience 65:247-262.CrossRefGoogle Scholar
  12. Collins, M., R. Knutti, J. Arblaster, J. L. Dufresne, T. Fichefet, P. Friedlingstein, X. Gao, W. J. Gutowski, T. Johns, G. Krinner, M. Shongwe, C. Tebaldi, A. J. Weaver, and M. Wehner. 2013. Long-term climate change: projections, commitments and irreversibility. Pages 1029-1136 in T. G. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, editors. Climate change 2013: the physical science basis, Cambridge University Press, Cambridge, UK.Google Scholar
  13. Cornwell, W. K., S. A. Stuart, A. Ramirez, C. R. Dolanc, J. H. Thorne, and D. D. Ackerly. 2012. Climate change impacts on California vegetation: physiology, life history, and ecosystem change. California Energy Commission CEC-500-2002-023. Sacramento, California, USA.Google Scholar
  14. Cowling, R. M., P. W. Rundel, B. B. Lamont, M. K. Arroyo, and M. Arianoutsou. 1996. Plant diversity in Mediterranean-climate regions. Trends in Ecology & Evolution 11:362-366.CrossRefGoogle Scholar
  15. Daly, C., D. Bachelet, J. M. Lenihan, R. P. Neilson, W. Parton, and D. Ojima. 2000. Dynamic simulation of tree-grass interactions for global change studies. Ecological Applications 10:449-469.Google Scholar
  16. Davis, S. D., F. W. Ewers, J. S. Sperry, K. A. Portwood, M. C. Crocker, and G. C. Adams. 2002. Shoot dieback during prolonged drought in Ceanothus (Rhamnaceae) chaparral of California: a possible case of hydraulic failure. American Journal of Botany 89:820-828.CrossRefGoogle Scholar
  17. Davis, F. W., and J. Michaelsen. 1995. Sensitivity of fire regime in chaparral ecosystems to climate change. Pages 435-456 in J. M. Moreno and W. C. Oechel, editors. Global change and Mediterranean-type ecosystems. Springer, New York, New York, USA.CrossRefGoogle Scholar
  18. Dennison, P. E., S. C. Brewer, J. D. Arnold, and M. A. Moritz. 2014. Large wildfire trends in the western United States, 1984-2011. Geophysical Research Letters 41:2928-2933.CrossRefGoogle Scholar
  19. Dennison, P. E., and M. A. Moritz. 2009. Critical live fuel moisture in chaparral ecosystems: a threshold for fire activity and its relationship to antecedent precipitation. International Journal of Wildland Fire 18:1021-1027.CrossRefGoogle Scholar
  20. Dettinger, M. D. 2005. From climate-change spaghetti to climate-change distributions for the 21st century California. San Francisco Estuary and Watershed Science 3:Article 4.Google Scholar
  21. Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan. 2011. Atmospheric rivers, floods and the water resources of California. Water 3:445-478.CrossRefGoogle Scholar
  22. Diffenbaugh, N. S., D. L. Swain, and D. Touma. 2015. Anthropogenic warming has increased drought risk in California. Proceedings of the National Academy of Sciences 112:3931-3936.CrossRefGoogle Scholar
  23. Fellows, A. W., and M. L. Goulden. 2012. Rapid vegetation redistribution in southern California during the early 2000s drought. Journal of Geophysical Research 117:G03025.CrossRefGoogle Scholar
  24. Field, C. B., G. C. Daily, F. W. Davis, S. Gaines, P. A. Matson, J. Melack, and N. L. Miller. 1999. Confronting climate change in California: ecological impacts on the golden state. A report of the Union of Concerned Scientists, Cambridge, Massachusetts and the Ecological Society of America, Washington D.C., USA.Google Scholar
  25. FRAP [Fire Resource and Assessment Program], California Department of Forestry and Fire Protection. 2015. FRAP vegetation geodatabase. http://frap.fire.ca.gov/data/frapgisdata-sw-fveg_download
  26. Frazer, J., and S. Davis. 1988. Differential survival of chaparral seedlings during the first summer drought after wildfire. Oecologia 76:215-221.CrossRefGoogle Scholar
  27. Gonzalez, P., J. J. Battles, B. M. Collins, T. Robards, and D. S. Saah. 2015. Aboveground live carbon stock changes of California wildland ecosystems, 2001–2010. Forest Ecology and Management 348:68-77.CrossRefGoogle Scholar
  28. Griffin, D., and K. J. Anchukaitis. 2014. How unusual is the 2012–2014 California drought? Geophysical Research Letters 41:9017-9023.CrossRefGoogle Scholar
  29. Haidinger, T. L., and J. E. Keeley. 1993. Role of high fire frequency in destruction of mixed chaparral. Madroño 40:141-147.Google Scholar
  30. Hayhoe, K., D. Cayan, C. B. Field, P. C. Frumhoff, E. P. Maurer, N. L. Miller, S. C. Moser, S. H. Schneider, K. N. Cahill, and E. E. Cleland. 2004. Emissions pathways, climate change, and impacts on California. Proceedings of the National Academy of Sciences 101:12422-12427.CrossRefGoogle Scholar
  31. Hoekstra, J. M., T. M. Boucher, T. H. Ricketts, and C. Roberts. 2005. Confronting a biome crisis: global disparities of habitat loss and protection. Ecology Letters 8:23-29.CrossRefGoogle Scholar
  32. Holland, V., and D. J. Keil. 1995. California vegetation. Kendall/Hunt Publishing Company, Dubuque, Iowa, USA.Google Scholar
  33. Hughes, M., A. Hall, and J. Kim. 2011. Human-induced changes in wind, temperature and relative humidity during Santa Ana events. Climatic Change 109:119-132.CrossRefGoogle Scholar
  34. IPCC [Intergovernmental Panel on Climate Change]. 2007. Climate change 2007: synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change, Intergovernmental Panel on Climate Change, Geneva, Switzerland.CrossRefGoogle Scholar
  35. Jacobsen, A. L., R. B. Pratt, S. D. Davis, and F. W. Ewers. 2007a. Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant, Cell & Environment 30:1599-1609.CrossRefGoogle Scholar
  36. Jacobsen, A. L., R. B. Pratt, F. W. Ewers, and S. D. Davis. 2007b. Cavitation resistance among 26 chaparral species of southern California. Ecological Monographs 77:99-115.CrossRefGoogle Scholar
  37. Jin, Y., M. L. Goulden, N. Faivre, S. Veraverbeke, F. Sun, A. Hall, M. S. Hand, S. Hook, and J. T. Randerson. 2015. Identification of two distinct fire regimes in Southern California: implications for economic impact and future change. Environmental Research Letters 10:094005.CrossRefGoogle Scholar
  38. Jin, Y., J. T. Randerson, N. Faivre, S. Capps, A. Hall, and M. L. Goulden. 2014. Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds. Journal of Geophysical Research: Biogeosciences 119:432-450.Google Scholar
  39. Jones, M. B., and H. M. Laude. 1960. Relationships between sprouting in chamise and the physiological condition of the plant. Journal of Range Management 13:210-214.CrossRefGoogle Scholar
  40. Keeley, J. E. 1975. Longevity of nonsprouting Ceanothus. American Midland Naturalist 93:504-507.CrossRefGoogle Scholar
  41. Keeley, J. E., and C. Fotheringham. 2001. Historic fire regime in southern California shrublands. Conservation Biology 15:1536-1548.CrossRefGoogle Scholar
  42. Keeley, J. E., and H. D. Safford. 2016. Fire as an ecosystem process. Pages 27-45 in H. A. Mooney and E. Zavaleta, editors. Ecosystems of California. University of California Press, Berkeley, California, USA.Google Scholar
  43. Keeley, J. E., and A. D. Syphard. 2015. Different fire-climate relationships on forested and non-forested landscapes in the Sierra Nevada ecoregion. International Journal of Wildland Fire 24:27-36.CrossRefGoogle Scholar
  44. Keeley, J. E., and A. D. Syphard. 2016. Climate change and future fire regimes: examples from California. Geosciences 6:37.CrossRefGoogle Scholar
  45. Keeley, J., and A. D. Syphard. 2017. Different historical fire-climate patterns in California. International Journal of Wildland Fire 26:253-268.CrossRefGoogle Scholar
  46. Keeley, J. E., and P. H. Zedler. 2009. Large, high-intensity fire events in southern California shrublands: debunking the fine-grain age patch model. Ecological Applications 19:69-94.CrossRefGoogle Scholar
  47. Kelly, A. E., and M. L. Goulden. 2008. Rapid shifts in plant distribution with recent climate change. Proceedings of the National Academy of Sciences 105:11823-11826.CrossRefGoogle Scholar
  48. Kolb, K. J., and S. D. Davis. 1994. Drought tolerance and xylem embolism in co-occurring species of coastal sage and chaparral. Ecology 74:648-659.CrossRefGoogle Scholar
  49. Krawchuk, M. A., M. A. Moritz, M. A. Parisien, J. Van Dorn, and K. Hayhoe. 2009. Global pyrogeography: the current and future distribution of wildfire. PloS ONE 4:e5102.CrossRefGoogle Scholar
  50. Krawchuk, M. A., and M. A. Moritz. 2011. Constraints on global fire activity vary across a resource gradient. Ecology 92:121-132.CrossRefGoogle Scholar
  51. Lawson, D. M., H. M. Regan, P. H. Zedler, and J. Franklin. 2010. Cumulative effects of land use, altered fire regime and climate change on persistence of Ceanothus verrucosus, a rare, fire‐dependent plant species. Global Change Biology 16:2518-2529.Google Scholar
  52. Lenihan, J. M., D. Bachelet, R. P. Neilson, and R. Drapek. 2008. Response of vegetation distribution, ecosystem productivity, and fire to climate change scenarios for California. Climatic Change 87:215-230.CrossRefGoogle Scholar
  53. Lenihan, J. M., R. Drapek, D. Bachelet, and R. P. Neilson. 2003. Climate change effects on vegetation distribution, carbon, and fire in California. Ecological Applications 13:1667-1681.CrossRefGoogle Scholar
  54. Littell, J. S., D. McKenzie, D. L. Peterson, and A. L. Westerling. 2009. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecological Applications 19:1003-1021.CrossRefGoogle Scholar
  55. Loarie, S. R., B. E. Carter, K. Hayhoe, S. McMahon, R. Moe, C. A. Knight, and D. D. Ackerly. 2008. Climate change and the future of California's endemic flora. PLoS ONE 3:e2502.CrossRefGoogle Scholar
  56. Luo, H., W. C. Oechel, S. J. Hastings, R. Zulueta, Y. Qian, and H. Kwon. 2007. Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide. Global Change Biology 13:386-396.CrossRefGoogle Scholar
  57. Mahall, B., and C. Wilson. 1986. Environmental induction and physiological consequences of natural pruning in the chaparral shrub Ceanothus megacarpus. Botanical Gazette 147:102-109.CrossRefGoogle Scholar
  58. Mann, M. E., and P. H. Gleick. 2015. Climate change and California drought in the 21st century. Proceedings of the National Academy of Sciences 112:3858-3859.CrossRefGoogle Scholar
  59. Meentemeyer, R. K., A. Moody, and J. Franklin. 2001. Landscape-scale patterns of shrub-species abundance in California chaparral-the role of topographically mediated resource gradients. Plant Ecology 156:19-41.CrossRefGoogle Scholar
  60. Melillo, J. M., T. T. Richmond, and G. Yohe. 2014. Climate change impacts in the United States: the third national climate assessment, US Global Change Research Program, Washington D.C., USA. http://nca2014.globalchange.gov/downloads Google Scholar
  61. Miles, S. R., and C. B. Goudey. 1997. Ecological subregions of California: section and subsection descriptions. R5-EM-TP-005. San Fransisco, California, USA, USDA Forest Service, Pacific Southwest Region.Google Scholar
  62. Miller, N. L., and N. J. Schlegel. 2006. Climate change projected fire weather sensitivity: California Santa Ana wind occurrence. Geophysical Research Letters 33:15.Google Scholar
  63. Molinari, N. A., S. C. Sawyer, and H. D. Safford. 2016. A summary of current trends and probable future trends in climate and climate-driven processes in the Cleveland National Forest and neighboring lands. USDA Forest Service, Pacific Southwest Region, Vallejo, California, USA. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/fseprd497636.pdf
  64. Mooney, H. A., and C. Chu. 1974. Seasonal carbon allocation in Heteromeles arbutifolia, a California evergreen shrub. Oecologia 14:295-306.CrossRefGoogle Scholar
  65. Mooney, H., B. Drake, R. Luxmoore, W. Oechel, and L. Pitelka. 1991. Predicting ecosystem responses to elevated CO2 concentrations. BioScience 41:96-104.CrossRefGoogle Scholar
  66. Paddock III, W. A., S. D. Davis, R. B. Pratt, A. L. Jacobsen, M. F. Tobin, J. López-Portillo, and F. W. Ewers. 2013. Factors determining mortality of adult chaparral shrubs in an extreme drought year in California. Aliso: A Journal of Systematic and Evolutionary Botany 31:49-57.CrossRefGoogle Scholar
  67. Parsons, D. J., P. W. Rundel, R. P. Hedlund, and G. A. Baker. 1981. Survival of severe drought by a non-sprouting chaparral shrub. American Journal of Botany 68:973-979.CrossRefGoogle Scholar
  68. Pausas, J. G., and J. E. Keeley. 2014a. Abrupt climate-independent fire regime changes. Ecosystems 17:1109-1120.CrossRefGoogle Scholar
  69. Pausas, J. G., and J. E. Keeley. 2014b. Evolutionary ecology of resprouting and seeding in fire‐prone ecosystems. New Phytologist 204:55-65.CrossRefGoogle Scholar
  70. Pausas, J. G., and S. Paula. 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecology and Biogeography 21:1074-1082.CrossRefGoogle Scholar
  71. Pausas, J. G., R. B. Pratt, J. E. Keeley, A. L. Jacobsen, A. R. Ramirez, A. Vilagrosa, S. Paula, I. N. Kaneakua‐Pia, and S. D. Davis. 2016. Towards understanding resprouting at the global scale. New Phytologist 209:945-954.CrossRefGoogle Scholar
  72. Pratt, R., A. Jacobsen, K. Golgotiu, J. Sperry, F. Ewers, and S. Davis. 2007. Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecological Monographs 77:239-253.CrossRefGoogle Scholar
  73. Pratt, R., A. Jacobsen, R. Mohla, F. Ewers, and S. Davis. 2008. Linkage between water stress tolerance and life history type in seedlings of nine chaparral species (Rhamnaceae). Journal of Ecology 96:1252-1265.CrossRefGoogle Scholar
  74. Pratt, R. B., A. L. Jacobsen, J. Hernandez, F. W. Ewers, G. B. North, and S. D. Davis. 2012. Allocation tradeoffs among chaparral shrub seedlings with different life history types (Rhamnaceae). American Journal of Botany 99:1464-1476.CrossRefGoogle Scholar
  75. Pratt, R. B., A. L. Jacobsen, A. R. Ramirez, A. M. Helms, C. A. Traugh, M. F. Tobin, M. S. Heffner, and S. D. Davis. 2014. Mortality of resprouting chaparral shrubs after a fire and during a record drought: physiological mechanisms and demographic consequences. Global Change Biology 20:893-907.CrossRefGoogle Scholar
  76. Price, C., and D. Rind. 1994. The impact of a 2× CO2 climate on lightning-caused fires. Journal of Climate 7:1484-1494.CrossRefGoogle Scholar
  77. Ramirez, A., R. Pratt, A. Jacobsen, and S. Davis. 2012. Exotic deer diminish post-fire resilience of native shrub communities on Santa Catalina Island, southern California. Plant Ecology 213:1037-1047.CrossRefGoogle Scholar
  78. Rapacciuolo, G., S. P. Maher, A. C. Schneider, T. T. Hammond, M. D. Jabis, R. E. Walsh, K. J. Iknayan, G. K. Walden, M. F. Oldfather, and D. D. Ackerly. 2014. Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. Global Change Biology 20:2841-2855.CrossRefGoogle Scholar
  79. Restaino, C. R., and H. D. Safford. 2018. Fire and climate change. Pages 493-505 in J. W. van Wagtendonk, N. G. Sugihara, S. L. Stephens, A. E. Thode, K. E. Shaffer, and J. A. Fites-Kaufman, editors. Fire in California’s ecosystems. Second edition. University of California Press, Berkeley, California, USA.Google Scholar
  80. Riahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj. 2011. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Climatic Change 109:33-57.CrossRefGoogle Scholar
  81. Riordan, E. C., and P. W. Rundel. 2014. Land use compounds habitat losses under projected climate change in a threatened California ecosystem. PloS ONE 9:e86487.CrossRefGoogle Scholar
  82. Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, and A. Kinzig. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770-1774.CrossRefGoogle Scholar
  83. Saruwatari, M., and S. Davis. 1989. Tissue water relations of three chaparral shrub species after wildfire. Oecologia 80:303-308.CrossRefGoogle Scholar
  84. Sawyer, S. C., J. Hooper, and H. D. Safford. 2014. A summary of current trends and probable future trends in climate and climate-driven processes for the Angeles and San Bernardino National Forests. USDA Forest Service, Pacific Southwest Region, Vallejo, California, USA. https://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5445379.pdf
  85. Schlesinger, W. H., J. T. Gray, D. S. Gill, and B. E. Mahall. 1982. Ceanothus megacarpus chaparral: a synthesis of ecosystem processes during development and annual growth. Botanical Review 48:71-117.CrossRefGoogle Scholar
  86. Schwilk, D. W., and J. E. Keeley. 2012. A plant distribution shift: temperature, drought or past disturbance. PLoS ONE 7:e31173.CrossRefGoogle Scholar
  87. Shaw, M. R., L. Pendleton, D. R. Cameron, B. Morris, D. Bachelet, K. Klausmeyer, J. MacKenzie, D. R. Conklin, G. N. Bratman, and J. Lenihan. 2011. The impact of climate change on California’s ecosystem services. Climatic Change 109:465-484.CrossRefGoogle Scholar
  88. Steel, Z. L., H. D. Safford, and J. H. Viers. 2015. The fire frequency‐severity relationship and the legacy of fire suppression in California forests. Ecosphere 6:1-23.CrossRefGoogle Scholar
  89. Syphard, A. D., V. C. Radeloff, J. E. Keeley, T. J. Hawbaker, M. K. Clayton, S. I. Stewart, and R. B. Hammer. 2007. Human influence on California fire regimes. Ecological Applications 17:1388-1402.CrossRefGoogle Scholar
  90. Thomas, C., and S. Davis. 1989. Recovery patterns of three chaparral shrub species after wildfire. Oecologia 80:309-320.CrossRefGoogle Scholar
  91. Thrasher, B., J. Xiong, W. Wang, F. Melton, A. Michaelis, and R. Nemani. 2013. Downscaled climate projections suitable for resource management. Eos, Transactions American Geophysical Union 94:321-323.CrossRefGoogle Scholar
  92. Tyler, C. M., D. C. Odion, and R. M. Callaway. 2007. Dynamics of woody species in the California grassland. Pages 169-179 in M. Stromberg, J. Corbin, and C. D'Antonio, editors. California Grasslands Ecology and Management. University of California Press, Berkeley, California, USA.Google Scholar
  93. Underwood, E. C., J. H. Viers, K. R. Klausmeyer, R. L. Cox, and M. R. Shaw. 2009. Threats and biodiversity in the mediterranean biome. Diversity and Distributions 15:188-197.CrossRefGoogle Scholar
  94. van Mantgem, P. J., J. C. Nesmith, M. Keifer, E. E. Knapp, A. Flint, and L. Flint. 2013. Climatic stress increases forest fire severity across the western United States. Ecology Letters 16:1151-1156.CrossRefGoogle Scholar
  95. Westerling, A. L. 2016. Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring. Philosophical Transactions of the Royal Society of London B: Biological Sciences 371:20150178.CrossRefGoogle Scholar
  96. Westerling, A., and B. Bryant. 2008. Climate change and wildfire in California. Climatic Change 87:231-249.CrossRefGoogle Scholar
  97. Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam. 2006. Warming and earlier spring increase western US forest wildfire activity. Science 313:940-943.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Nicole A. Molinari
    • 1
  • Emma C. Underwood
    • 3
    • 2
  • John B. Kim
    • 4
  • Hugh D. Safford
    • 3
    • 5
  1. 1.USDA Forest Service, Los Padres National ForestGoletaUSA
  2. 2.University of CaliforniaDavisUSA
  3. 3.University of SouthamptonSouthamptonUK
  4. 4.USDA Forest Service, Pacific Northwest Research StationCorvallisUSA
  5. 5.University of CaliforniaDavisUSA

Personalised recommendations