Skip to main content

Bifurcation Analysis of a Sparse Neural Network with Cubic Topology

  • Chapter
  • First Online:
Mathematical and Theoretical Neuroscience

Part of the book series: Springer INdAM Series ((SINDAMS,volume 24))

  • 1446 Accesses

Abstract

We study analytically the changes of dynamics of a firing-rate network model with cubic topology. The present study is performed by extending to this sparse network a formalism we previously developed for the bifurcation analysis of fully-connected circuits. In particular we prove that, unlike the fully-connected model, in the cubic network the neural activity may undergo spontaneous symmetry-breaking even if the network is composed exclusively of excitatory neurons. Moreover, while in the fully-connected topology the symmetry-breaking occurs through pitchfork bifurcations, in the excitatory cubic network it occurs through complex branching-point bifurcations with five branches. These results lead to the conclusion that the sparseness of the synaptic connections may increase the complexity of dynamics compared to dense networks.

Diego Fasoli and Anna Cattani, these authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ashwin, P., Coombes, S., Nicks, R.: Mathematical frameworks for oscillatory network dynamics in neuroscience. J. Math. Neurosci. 6, 2 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bohland, J.W., et al.: A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput. Biol. 5, e1000334 (2009)

    Article  Google Scholar 

  3. Bressloff, P.C.: Stochastic neural field theory and the system-size expansion. SIAM J. Appl. Math. 70(5), 1488–1521 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buice, M.A., Chow, C.C.: Dynamic finite size effects in spiking neural networks. PLoS Comput. Biol. 9(1), e1002872 (2013)

    Article  MathSciNet  Google Scholar 

  5. Buzsáki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012)

    Article  Google Scholar 

  6. Das, P.K., Schieve, W.C.: A bifurcation analysis of the four dimensional generalized Hopfield neural network. Physica D 88, 14–28 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29(2), 141–164 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Einevoll, G.T., Kayser, C., Logothetis, N.K., Panzeri, S.: Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14, 770–785 (2013)

    Article  Google Scholar 

  9. Fasoli, D., Cattani, A., Panzeri, S.: The complexity of dynamics in small neural circuits. PLoS Comput. Biol. 12(8), e1004992 (2016)

    Article  Google Scholar 

  10. Faugeras, O., MacLaurin, J.: Asymptotic description of neural networks with correlated synaptic weights. Entropy 17(7), 4701–4743 (2015)

    Article  Google Scholar 

  11. Freeman, W.J.: Neurodynamics: An Exploration in Mesoscopic Brain Dynamics. Springer, London (2000)

    Book  MATH  Google Scholar 

  12. Hopfield, J.J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl. Acad. Sci. 81(10), 3088–3092 (1984)

    Article  MATH  Google Scholar 

  13. Kaslik, E., Balint, Ş.: Bifurcation analysis for a two-dimensional delayed discrete-time Hopfield neural network. Chaos Soliton Fract. 34, 1245–1253 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer, New York (1998)

    MATH  Google Scholar 

  15. Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120, 701–722 (1997)

    Article  Google Scholar 

  16. Pasemann, F.: Complex dynamics and the structure of small neural networks. Netw. Comput. Neural Syst. 13, 195–216 (2002)

    Article  MATH  Google Scholar 

  17. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Sarat Book House, Kolkata (1994)

    Google Scholar 

  18. Touboul, J., Hermann, G., Faugeras, O.: Noise-induced behaviors in neural mean field dynamics. SIAM J. Appl. Dyn. Syst. 11(1), 49–81 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972)

    Article  Google Scholar 

  20. Wright, J.J., Rennie, C.J., Lees, G.J., Robinson, P.A., Bourke, P.D., Chapman, C.L., Gordon, E., Rowe, D.L.: Simulated electrocortical activity at microscopic, mesoscopic, and global scales. Neuropsychopharmacology 28(Suppl. 1), S80–S93 (2003)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Autonomous Province of Trento, Call “Grandi Progetti 2012,” project “Characterizing and improving brain mechanisms of attention—ATTEND”.

The funders had no role in study design, data collection and analysis, decision to publish, interpretation of results, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Diego Fasoli or Anna Cattani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fasoli, D., Cattani, A., Panzeri, S. (2017). Bifurcation Analysis of a Sparse Neural Network with Cubic Topology. In: Naldi, G., Nieus, T. (eds) Mathematical and Theoretical Neuroscience. Springer INdAM Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-68297-6_5

Download citation

Publish with us

Policies and ethics