Skip to main content

Inverse Modeling for MEG/EEG Data

  • Chapter
  • First Online:
Mathematical and Theoretical Neuroscience

Part of the book series: Springer INdAM Series ((SINDAMS,volume 24))

Abstract

We provide an overview of the state-of-the-art for mathematical methods that are used to reconstruct brain activity from neurophysiological data. After a brief introduction on the mathematics of the forward problem, we discuss standard and recently proposed regularization methods, as well as Monte Carlo techniques for Bayesian inference. We classify the inverse methods based on the underlying source model, and discuss advantages and disadvantages. Finally we describe an application to the pre-surgical evaluation of epileptic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrzejak, R.G., David, O., Gnatkovsky, V., Wendling, F., Bartolomei, F., Francione, S., Kahane, P., Schindler, K., De Curtis, M.: Localization of epileptogenic zone on pre-surgical intracranial EEG recordings: toward a validation of quantitative signal analysis approaches. Brain Topogr. 28(6), 832–837 (2015)

    Article  Google Scholar 

  2. Antelis, J.M., Minguez, J.: DYNAMO: concurrent dynamic multi-model source localization method for EEG and/or MEG. J. Neurosci. Methods 212(1), 28–42 (2013)

    Article  Google Scholar 

  3. Barnes, G.R., Hillebrand, A.: Statistical flattening of MEG beamformer images. Hum. Brain Mapp. 18(1), 1–12 (2003)

    Article  Google Scholar 

  4. Bouet, R., Jung, J., Delpuech, C., Ryvlin, P., Isnard, J., Guenot, M., Bertrand, O., Mauguière, F.: Towards source volume estimation of interictal spikes in focal epilepsy using magnetoencephalography. NeuroImage 59(4), 3955–3966 (2012)

    Article  Google Scholar 

  5. Calvetti, D., Pascarella, A., Pitolli, F., Somersalo, E., Vantaggi, B.: A hierarchical krylov–bayes iterative inverse solver for MEG with physiological preconditioning. Inverse Probl. 31(12), 125005 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campi, C., Pascarella, A., Sorrentino, A., Piana, M.: A rao-blackwellized particle filter for magnetoencephalography. Inverse Probl. 24, 025023 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardinale, F., Cossu, M., Castana, L., Casaceli, G., Schiariti, M.P., Miserocchi, A., Fuschillo, D., Moscato, A., Caborni, C., Arnulfo, G., et al.: Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery 72(3), 353–366 (2013)

    Article  Google Scholar 

  8. Chen, X., Särkkä, S., Godsill, S.: A bayesian particle filtering method for brain source localisation. Digit. Signal Process. 47, 192–204 (2015)

    Article  MathSciNet  Google Scholar 

  9. Dassios, G., Fokas, A.S.: The definite non-uniqueness results for deterministic EEG and MEG data. Inverse Probl. 29(6), 065012 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Pasquale, F., Della Penna, S., Snyder, A.Z., Lewis, C., Mantini, D., Marzetti, L., Belardinelli, P., Ciancetta, L., Pizzella, V., Romani, G.L., et al.: Temporal dynamics of spontaneous MEG activity in brain networks. Proc. Natl. Acad. Sci. 107(13), 6040–6045 (2010)

    Article  Google Scholar 

  11. Del Moral, P., Doucet, A., Jasra, A.: Sequential monte carlo samplers. J. R. Stat. Soc. Ser. B (Stat Methodol.) 68(3), 411–436 (2006)

    Google Scholar 

  12. Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: fifteen years later. Handb. nonlinear filter. 12(656–704), 3 (2009)

    MATH  Google Scholar 

  13. Galka, A., Yamashita, O., Ozaki, T., Biscay, R., Valdés-Sosa, P.: A solution to the dynamical inverse problem of EEG generation using spatiotemporal kalman filtering. NeuroImage 23(2), 435–453 (2004)

    Article  Google Scholar 

  14. Gramfort, A., Kowalski, M., Hämäläinen, M.: Mixed-norm estimates for the M/EEG inverse problem using accelerated gradient methods. Phys. Med. Biol. 57(7), 1937 (2012)

    Article  Google Scholar 

  15. Green, P.J.: Reversible jump markov chain monte carlo computation and bayesian model determination. Biometrika 82, 711–732 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hämäläinen, M.S., Ilmoniemi, R.J.: Interpreting magnetic fields of the brain: minimum norm estimates. Med. Biol. Eng. Comput. 32(1), 35–42 (1994)

    Article  Google Scholar 

  17. Hämäläinen, M., Hari, R., Ilmoniemi, R.J., Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. Mod. Phys. 65(2), 413 (1993)

    Article  Google Scholar 

  18. Huang, M., Aine, C.J., Supek, S., Best, E., Ranken, D., Flynn, E.R.: Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials Sect. 108(1), 32–44 (1998)

    Google Scholar 

  19. Jun, S.C., George, J.S., Paré-Blagoev, J., Plis, S.M., Ranken, D.M., Schmidt, D.M., Wood, C.C.: Spatiotemporal bayesian inference dipole analysis for MEG neuroimaging data. NeuroImage 28(1), 84–98 (2005)

    Article  Google Scholar 

  20. Kowalski, M.: Sparse regression using mixed norms. Appl. Comput. Harmon. Anal. 27(3), 303–324 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lamus, C., Hämäläinen, M.S., Temereanca, S., Brown, E.N., Purdon, P.L.: A spatiotemporal dynamic distributed solution to the MEG inverse problem. NeuroImage 63(2), 894–909 (2012)

    Article  Google Scholar 

  22. Lin, F.-H., Witzel, T., Ahlfors, S.P., Stufflebeam, S.M., Belliveau, J.W., Hämäläinen, M.S.: Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage 31(1), 160–171 (2006)

    Article  Google Scholar 

  23. Long, C.J., Purdon, P.L., Temereanca, S., Desai, N.U., Hamalainen, M., Brown, E.N.: Large scale kalman filtering solutions to the electrophysiological source localization problem-a MEG case study. In: Engineering in Medicine and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE, pp. 4532–4535. IEEE, New York (2006)

    Google Scholar 

  24. Long, C.J., Purdon, P.L., Temereanca, S., Desai, N.U., Hämäläinen, M.S., Brown, E.N.: State-space solutions to the dynamic magnetoencephalography inverse problem using high performance computing. Ann. Appl. Stat. 5(2B), 1207 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Miao, L., Zhang, J.J., Chakrabarti, C., Papandreou-Suppappola, A.: Efficient bayesian tracking of multiple sources of neural activity: algorithms and real-time FPGA implementation. IEEE Trans. Signal Process. 61(3), 633–647 (2013)

    Article  MathSciNet  Google Scholar 

  26. Mosher, J.C., Leahy, R.M.: Recursive music: a framework for EEG and MEG source localization. IEEE Trans. Biomed. Eng. 45(11), 1342–1354 (1998)

    Article  Google Scholar 

  27. Mosher, J.C., Leahy, R.M.: Source localization using recursively applied and projected (rap) music. IEEE Trans. Signal Process. 47(2), 332–340 (1999)

    Article  Google Scholar 

  28. Murakami, H., Wang, Z.I., Marashly, A., Krishnan, B., Prayson, R.A., Kakisaka, Y., Mosher, J.C., Bulacio, J., Gonzalez-Martinez, J.A., Bingaman, W.E., et al.: Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain 139(11), 2935–2947 (2016)

    Article  Google Scholar 

  29. Nguyen, D.K., Mbacfou, M.T., Nguyen, D.B., Lassonde, M.: Prevalence of nonlesional focal epilepsy in an adult epilepsy clinic. Can. J. Neurol. Sci. 40(2), 198–202 (2013)

    Article  Google Scholar 

  30. Niedermeyer, E., Lopes da Silva, F.H.: Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, Philadelphia (2005)

    Google Scholar 

  31. Ou, W., Hämäläinen, M.S., Golland, P.: A distributed spatio-temporal EEG/MEG inverse solver. NeuroImage 44(3), 932–946 (2009)

    Article  Google Scholar 

  32. Parikh, N., Boyd, S., et al.: Proximal algorithms. Found. Trends Optim. 1(3), 127–239 (2014)

    Google Scholar 

  33. Pascarella, A., Todaro, C., Clerc, M., Serre, T., Piana, M.: Source modeling of electrocorticography (ecog) data: stability analysis and spatial filtering. J. Neurosci. Methods 263, 134 (2016)

    Article  Google Scholar 

  34. Pursiainen, S., Sorrentino, A., Campi, C., Piana, M.: Forward simulation and inverse dipole localization with the lowest raviart-thomas elements for electroencephalography. Inverse Probl. 27, 045003 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rabiner, L., Juang, B.: An introduction to hidden markov models. IEEE ASSP Mag. 3(1), 4–16 (1986)

    Article  Google Scholar 

  36. Sekihara, K., Nagarajan, S.S., Poeppel, D., Marantz, A., Miyashita, Y.: Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Trans. Biomed. Eng. 48(7), 760 (2001)

    Article  Google Scholar 

  37. Somersalo, E., Voutilainen, A., Kaipio, J.P.: Non-stationary magnetoencephalography by bayesian filtering of dipole models. Inverse Probl. 19(5), 1047 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Sommariva, S., Sorrentino, A.: Sequential monte carlo samplers for semi-linear inverse problems and application to magnetoencephalography. Inverse Probl. 30(11), 114020 (2014)

    Article  MATH  Google Scholar 

  39. Sorrentino, A., Parkkonen, L., Pascarella, A., Campi, C., Piana, M.: Dynamical MEG source modeling with multi-target bayesian filtering. Hum. Brain Mapp. 30(6), 1911–1921 (2009)

    Article  Google Scholar 

  40. Sorrentino, A., Johansen, A.M., Aston, J.A.D., Nichols, T.E., Kendall, W.S., et al.: Dynamic filtering of static dipoles in magnetoencephalography. Ann. Appl. Stat. 7(2), 955–988 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sorrentino, A., Luria, G., Aramini, R.: Bayesian multi-dipole modelling of a single topography in MEG by adaptive sequential monte carlo samplers. Inverse Probl. 30(4), 045010 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Tian, T.S., Huang, J.Z., Shen, H., Li, Z.: A two-way regularization method for MEG source reconstruction. Ann. Appl. Stat. 6, 1021–1046 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Uutela, K., Hamalainen, M., Salmelin, R.: Global optimization in the localization of neuromagnetic sources. IEEE Trans. Biomed. Eng. 45(6), 716–723 (1998)

    Article  Google Scholar 

  44. Uutela, K., Hämäläinen, M., Somersalo, E.: Visualization of magnetoencephalographic data using minimum current estimates. NeuroImage 10(2), 173–180 (1999)

    Article  Google Scholar 

  45. Vivaldi, V., Sorrentino, A.: Bayesian smoothing of dipoles in magneto-/electroencephalography. Inverse Probl. 32(4), 045007 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Sorrentino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sorrentino, A., Piana, M. (2017). Inverse Modeling for MEG/EEG Data. In: Naldi, G., Nieus, T. (eds) Mathematical and Theoretical Neuroscience. Springer INdAM Series, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-319-68297-6_15

Download citation

Publish with us

Policies and ethics