Skip to main content

Materials Data Infrastructure and Materials Informatics

  • Chapter
  • First Online:
Computational Materials System Design

Abstract

Data-driven materials research requires two key supporting components: data infrastructure and informatics. In this chapter, we review the state of the art in materials data infrastructure, focusing in detail on four infrastructure projects spanning academia, government, and industry. We also discuss data standards as an enabling step on the path to community-scale materials data infrastructure. We then introduce materials informatics as a potent accelerator of materials development and highlight specific application areas, including polymer dielectrics and dielectric breakdown.

The original version of this chapter was revised. An erratum to this chapter can be found at https://doi.org/10.1007/978-3-319-68280-8_10

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Westbrook, J.H., Rumble, J.R. Jr. Computerized Materials Data Systems. Gaithsburg (1983) https://www.osti.gov/scitech/biblio/6969565

  2. O’Mara, J., Meredig, B., Michel, K.: Materials data infrastructure: a case study of the citrination platform to examine data import, storage, and access. JOM 68(8) 2013–2034 (2016)

    Google Scholar 

  3. Meredig, B.: Industrial materials informatics: analyzing large-scale data to solve applied problems in R&D, manufacturing, and supply chain. COSSMS. 21(3), 159–166 (2016)

    Google Scholar 

  4. Frantzen, A., Sanders, D., Scheidtmann, J., Simon, U., Maier, W.F.: A flexible database for combinatorial and high-throughput materials science. QSAR Comb. Sci. 24(1), 22–28 (2005)

    Article  Google Scholar 

  5. Xu, Y., Yamazaki, M., Villars, P.: Inorganic materials database for exploring the nature of material. Jpn. J. Appl. Phys. 50(11), 11RH02 (2011)

    Article  Google Scholar 

  6. National Science and Technology Council Committee on Technology: Materials Genome Initiative Strategic Plan,” no. June, (2014)

    Google Scholar 

  7. Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., Persson, K.A.: Commentary: the materials project: a materials genome approach to accelerating materials innovation. APL Mater. 1(1), 11002 (2013)

    Article  Google Scholar 

  8. Curtarolo, S., Setyawan, W., Wang, S., Xue, J., Yang, K., Taylor, R.H., Nelson, L.J., Hart, G.L.W., Sanvito, S., Buongiorno-Nardelli, M., Mingo, N., Levy, O.: AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012)

    Article  Google Scholar 

  9. Saal, J.E., Kirklin, S., Aykol, M., Meredig, B., Wolverton, C.: Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM. 65(11), 1501–1509 (2013)

    Article  Google Scholar 

  10. Holdren, J.P.: Memorandum for the Heads of Executive Departments and Agencies: Increasing Access to the Results of Federally Funded Scientific Research. pp. 1–6, (2013)

    Google Scholar 

  11. Austin, T.: No Title. Mater. Discov. (2016)

    Google Scholar 

  12. The NoMaD Repository. [Online]. Available: http://nomad-repository.eu/cms/. Accessed: 17-Jul-2016

  13. Hill, J., Mulholland, G., Pearson, K., Seshadri, R., Wolverton, C., Meredig, B.: Materials science with large scale data and informatics: unlocking new opportunities. MRS Bull. 41, 399–409 (2016)

    Article  Google Scholar 

  14. NIST Repositories.

    Google Scholar 

  15. Foster, I., Ananthakrishnan, R., Blaiszik, B., Chard, K., Osborn, R., Tuecke, S., Wilde, M., Wozniak, J.: Networking materials data: accelerating discovery at an experimental facility. Adv. Parallel Comput. 26, (2015)

    Google Scholar 

  16. Inorganic Crystal Structure Database. [Online]. Available: https://lib.stanford.edu/inorganic-crystal-structure-database-icsd. Accessed: 09-Feb-2015

  17. A. Belsky, M. Hellenbrandt, V. L. Karen, P. Luksch, New developments in the inorganic crystal structure database (ICSD): accessibility in support of materials research and design, Acta Crystallogr. Sect. B Struct. Sci., 58, 3, 364–369,2002

    Google Scholar 

  18. Meredig, B.: Industrial materials informatics: analyzing large-scale data to solve applied problems in R&D, manufacturing, and supply chain. COSSMS (2016)

    Google Scholar 

  19. Codd, E.F.: Relational database: a practical foundation for productivity. Commun. ACM. 25(2), 109–117 (1982)

    Article  Google Scholar 

  20. Sumathi, S., Esakkirajan, S.: Fundamentals of Relational Database Management Systems

    Google Scholar 

  21. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence. Addison-Wesley, Upper Saddle River (2013)

    Google Scholar 

  22. Blair, J., Canon, R.S., Deslippe, J., Essiari, A., Hexemer, A., MacDowell, A.A., Parkinson, D.Y., Patton, S.J., Ramakrishnan, L., Tamura, N., Tierney, B.L., Tull, C.E.: High performance data management and analysis for tomography, p. 92121G (2014)

    Google Scholar 

  23. Mesnier, M., Ganger, G.R., Riedel, E.: Storage area networking - object-based storage. IEEE Commun. Mag. 41(8), 84–90 (2003)

    Article  Google Scholar 

  24. Hall, S.R., Allen, F.H., Brown, I.D.: The crystallographic information file (CIF): a new standard archive file for crystallography. Acta Crystallogr. Sect. A Found. Crystallogr. 47(6), 655–685 (1991)

    Article  Google Scholar 

  25. Warren, J.A, Boisvert, R.F.: Building the Materials Innovation Infrastructure: Data and Standards Building the Materials Innovation Infrastructure: Data and Standards. (2012)

    Google Scholar 

  26. Ward, C.H., Warren, J.A., Ward, C.H.: Materials Genome Initiative : Materials Data

    Google Scholar 

  27. NIST Materials Data Curation System. [Online]. Available: https://mgi.nist.gov/materials-data-curation-system

  28. Huck, P., Jain, A., Gunter, D., Winston, D., Persson, K.: A Community Contribution Framework for Sharing Materials Data with Materials Project. (2015)

    Google Scholar 

  29. Citrine Informatics, “Citrination.” [Online]. Available: https://citrination.com. Accessed: 09-Feb-2015

  30. Michel, K.J., Meredig, B.: Beyond bulk Single crystals: a data format for all materials structure-property-processing relationships. MRS Bull. 41(8), 617–623 (2016)

    Google Scholar 

  31. Documenation of the Physical Information File (PIF) schema. [Online]. Available: http://citrineinformatics.github.io/pif-documentation/

  32. Mulholland, G.J., Paradiso, S.P.: Perspective: materials informatics across the product lifecycle: selection, manufacturing, and certification. APL Mater. 4(5), 53207 (2016)

    Article  Google Scholar 

  33. No Title. [Online]. Available: https://commons.wikimedia.org/wiki/File:Elmer-pump-heatequation.png

  34. No Title. [Online]. Available: https://commons.wikimedia.org/wiki/File:BrittleAluminium 320MPa_S-%0AN_Curve.svg

  35. No Title. [Online]. Available: https://commons.wikimedia.org/wiki/File:Microstructure_of_ rolled_and_annealed_brass;_magnification_400X.jpg.

  36. No Title. [Online]. Available: https://commons.wikimedia.org/wiki/File:Grgr3d_small.gif

  37. No Title. [Online]. Available: https://commons.wikimedia.org/wiki/File:Atomic_resolution_ Au100.JPG.

  38. No Title. [Online]. Available: https://commons.wikimedia.org/wiki/File:Chalcopyrite-unit-cell-3D-balls.png

  39. Citrination API Documentation

    Google Scholar 

  40. Seshadri, R., Sparks, T.D.: Perspective: interactive material property databases through aggregation of literature data. APL Mater. 4(5), 53206 (2016)

    Article  Google Scholar 

  41. Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., Ré, C.: Incremental knowledge base construction using DeepDive. Proc. VLDB Endow. 8(11), 1310–1321 (2015)

    Article  Google Scholar 

  42. Lucene. [Online]. Available: https://lucene.apache.org/

  43. Solr. (n.a.) [Online]. Available: http://lucene.apache.org/solr

  44. ElasticSearch. (n.a.) [Online]. Available: https://www.elastic.co/products/elasticsearch

  45. Dima, A., Bhaskarla, S., Becker, C., Brady, M., Campbell, C., Dessauw, P., Hanisch, R., Kattner, U., Kroenlein, K., Newrock, M., Peskin, A., Plante, R., Li, S.-Y., Rigodiat, P.-F., Amaral, G. S., Trautt, Z., Schmitt, X., Warren, J., Youssef, S : Informatics infrastructure for the materials genome initiative. JOM. (2016)

    Google Scholar 

  46. Blaiszik, B., Chard, K., Pruyne, J., Ananthakrishnan, R., Tuecke, S., Foster, I.: The materials data facility: data services to advance materials science research. JOM. 68(8), 2045–2052 (2016)

    Article  Google Scholar 

  47. Tansley, S., Tolle, K.: The Fourth Paradigm: Data-Intensive Scientific Discovery

    Google Scholar 

  48. White, A.: The materials genome initiative: one year on. MRS Bull. 37(8), 715–716 (2012)

    Article  Google Scholar 

  49. Materials in the New Millennium: National Academies Press: Washington, D.C (2001)

    Google Scholar 

  50. Eagar, Thomas: Bringing new materials to market. Technol. Rev. 98(2), (1995)

    Google Scholar 

  51. Nakamura, S., Krames, M.R.: History of Gallium–Nitride-Based Light-Emitting Diodes for Illumination

    Google Scholar 

  52. Hadjipanayis, G.C., Hazelton, R.C., Lawless, K.R.: New iron-rare-earth based permanent magnet materials. Appl. Phys. Lett. 43(8), 797 (1983)

    Article  Google Scholar 

  53. Ceder, G., Whittingham, M.S., Ceder, G., Van der Ven, A., Morgan, D., Van der Ven, A., Ceder, G., Kang, B., Ceder, G., Ping Ong, S., Wang, L., Kang, B., Ceder, G., Kayyar, A., Qian, H., Luo, J., Ong, S.P., Jain, A., Hautier, G., Kang, B., Ceder, G., Reed, J., Ceder, G., Reed, J., Ceder, G.: Opportunities and challenges for first-principles materials design and applications to li battery materials. MRS Bull. 35(9), 693–701 (2010)

    Article  Google Scholar 

  54. Allison, J., Backman, D., Christodoulou, L.: Integrated computational materials engineering: a new paradigm for the global materials profession. JOM. 58(11), 25–27 (2006)

    Article  Google Scholar 

  55. Johnson, R.C.: IBM launches accelerated discovery lab. EE Times (2013)

    Google Scholar 

  56. Suh, C., Rajan, K., Vogel, B., Narasimhan, B., Mallapragada, S.: Informatics Methods for Combinatorial Materials Science. Wiley, Hoboken (2006)

    Google Scholar 

  57. Agrawal, A., Deshpande, P.D., Cecen, A., Basavarsu, G.P., Choudhary, A.N., Kalidindi, S.R.: Exploration of data science techniques to predict fatigue strength of steel from composition and processing parameters. Integr. Mater. Manuf. Innov. 3(1), 8 (2014)

    Article  Google Scholar 

  58. Jee, D.-H., Kang, K.-J.: A method for optimal material selection aided with decision making theory. Mater. Des. 21(3), 199–206 (2000)

    Article  Google Scholar 

  59. Sparks, T.D., Gaultois, M.W., Oliynyk, A., Brgoch, J., Meredig, B.: Data mining our way to the next generation of thermoelectrics. Scr. Mater. (2015)

    Google Scholar 

  60. Gaultois, M.W., Oliynyk, A.O., Mar, A., Sparks, T.D., Mulholland, G.J., Meredig, B.: Perspective: Web-based machine learning models for real-time screening of thermoelectric materials properties. APL Mater. 4(5), 53213 (2016)

    Article  Google Scholar 

  61. Peterson, A.A., Christensenb, R., Khorshidia, A.: Addressing uncertainty in atomistic machine learning. Phys. Chem. Chem. Phys. (18), 10978–10985 (2017)

    Google Scholar 

  62. Jain, A., Hautier, G., Moore, C.J., Ping Ong, S., Fischer, C.C., Mueller, T., Persson, K.A., Ceder, G.: A high-throughput infrastructure for density functional theory calculations. Comput. Mater. Sci. 50(8), 2295–2310 (2011)

    Article  Google Scholar 

  63. Eager, T.W.: No Title. MIT Technol. Rev. 98(42), (1995)

    Google Scholar 

  64. Barnett, B., Bowen, H.K., Clark, K.: The changing paradigm for business success in advanced materials and components manufacturing. MRS Bull. 17(4), 35–37 (1992)

    Article  Google Scholar 

  65. Swink, M., Song, M.: Effects of marketing-manufacturing integration on new product development time and competitive advantage. J. Oper. Manag. 25(1), 203–217 (2007)

    Article  Google Scholar 

  66. Meredig, B., Agrawal, A., Kirklin, S., Saal, J.E., Doak, J.W., Thompson, A., Zhang, K., Choudhary, A., Wolverton, C.: Combinatorial screening for new materials in unconstrained composition space with machine learning. Phys. Rev. B. 89(9), 94104 (2014)

    Article  Google Scholar 

  67. Faber, F., Lindmaa, A., von Lilienfeld, O.A., Armiento, R.: Crystal Structure Representations for Machine Learning Models of Formation Energies (2015)

    Google Scholar 

  68. Balachandran, P.V., Theiler, J., Rondinelli, J.M., Lookman, T.: Materials prediction via classification learning. Sci Rep. 5, 13285 (2015)

    Article  Google Scholar 

  69. Kong, C.S., Broderick, S.R., Jones, T.E., Loyola, C., Eberhart, M.E., Rajan, K.: Mining for elastic constants of intermetallics from the charge density landscape. Phys. B Condens. Matter. 458, 1–7 (2015)

    Article  Google Scholar 

  70. Kappes, B.B., Ciobanu, C.V.: Materials and Manufacturing Processes Materials Screening Through GPU Accelerated Topological Mapping

    Google Scholar 

  71. Fischer, C.C., Tibbetts, K.J., Morgan, D., Ceder, G.: Predicting crystal structure by merging data mining with quantum mechanics. Nat. Mater. 5(8), 641–646 (2006)

    Article  Google Scholar 

  72. Pyzer-Knapp, E.O., Suh, C., Gómez-Bombarelli, R., Aguilera-Iparraguirre, J., Aspuru-Guzik, A.: What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery. https://doi.org/10.1146/annurev-matsci-070214-020823, (2015)

  73. Isayev, O., Fourches, D., Muratov, E.N., Oses, C., Rasch, K., Tropsha, A., Curtarolo, S.: Materials cartography: representing and mining materials space using structural and electronic fingerprints. Chem. Mater. 27(3), 735–743 (2015)

    Article  Google Scholar 

  74. von Lilienfeld, O.A., Ramakrishnan, R., Rupp, M., Knoll, A.: Fourier series of atomic radial distribution functions: a molecular fingerprint for machine learning models of quantum chemical properties. Int. J. Quantum Chem. 115(16), 1084–1093 (2015)

    Article  Google Scholar 

  75. Hansen, K., Biegler, F., Ramakrishnan, R., Pronobis, W., von Lilienfeld, O.A., Müller, K.-R., Tkatchenko, A.: Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space. J. Phys. Chem. Lett. 6(12), 2326–2331 (2015)

    Article  Google Scholar 

  76. Sarkar, N.: The combined contraceptive vaginal device (NuvaRing®): A comprehensive review. https://doi.org/10.1080/13625180500131683, (2009)

  77. Sirisalee, P., Ashby, M.F., Parks, G.T., Clarkson, P.J.: Multi-criteria material selection in engineering design. Adv. Eng. Mater. 6(12), 84–92 (2004)

    Article  Google Scholar 

  78. Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization *

    Google Scholar 

  79. Sharma, V., Wang, C., Lorenzini, R.G., Ma, R., Zhu, Q., Sinkovits, D.W., Pilania, G., Oganov, A.R., Kumar, S., Sotzing, G.A., Boggs, S.A., Ramprasad, R.: Rational design of all organic polymer dielectrics. Nat. Commun. 5, 4845 (2014)

    Article  Google Scholar 

  80. Mannodi-Kanakkithodi, A., Pilania, G., Huan, T.D., Lookman, T., Ramprasad, R.: Machine learning strategy for accelerated design of polymer dielectrics. Sci Rep. 6, 20952 (2016)

    Article  Google Scholar 

  81. Goedecker, S.: Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120(21), 9911–9917 (2004)

    Article  Google Scholar 

  82. Kresse, G., Hafner, J.: Ab initio molecular dynamics for liquid metals. Phys. Rev. B. 47(1), 558–561 (1993)

    Article  Google Scholar 

  83. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened coulomb potential. J. Chem. Phys. 118(18), 8207 (2003)

    Article  Google Scholar 

  84. Baroni, S., de Gironcoli, S., Dal Corso, A., Giannozzi, P.: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73(2), 515–562 (2001)

    Article  Google Scholar 

  85. Mannodi-Kanakkithodi, A., Treich, G. M., Huan, T. D., Ma, R., Tefferi, M., Cao, Y., Sotzing, G. A., Ramprasad, R.: Rational co-design of polymer dielectrics for energy storage. Adv. Mater. (2016)

    Google Scholar 

  86. Huan, T.D., Mannodi-Kanakkithodi, A., Kim, C., Sharma, V., Pilania, G., Ramprasad, R.: A polymer dataset for accelerated property prediction and design. Sci. Data. 3, 160012 (2016)

    Article  Google Scholar 

  87. Vu, K., Snyder, J.C., Li, L., Rupp, M., Chen, B.F., Khelif, T., Müller, K.-R., Burke, K.: Understanding kernel ridge regression: common behaviors from simple functions to density functionals. Int. J. Quantum Chem. 115(16), 1115–1128 (2015)

    Article  Google Scholar 

  88. Kim, C., Pilania, G., Ramprasad, R.: From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown. Chem. Mater. 28, 1304–1311 (2016)

    Article  Google Scholar 

  89. Fröhlich, H.: Theory of dielectric breakdown. Nature. 151(3829), 339–340 (1943)

    Article  Google Scholar 

  90. Frohlich, H.: On the theory of dielectric breakdown in solids. Proc. R. Soc. A Math. Phys. Eng. Sci. 188(1015), 521–532 (1947)

    Article  Google Scholar 

  91. Sun, Y., Boggs, S.A., Ramprasad, R.: The intrinsic electrical breakdown strength of insulators from first principles. Appl. Phys. Lett. 101(13), 132906 (2012)

    Article  Google Scholar 

  92. Kim, C., Pilania, G., Ramprasad, R.: Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX 3 perovskites. J. Phys. Chem. C. 120(27), 14575–14580 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryce Meredig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hill, J., Mannodi-Kanakkithodi, A., Ramprasad, R., Meredig, B. (2018). Materials Data Infrastructure and Materials Informatics. In: Shin, D., Saal, J. (eds) Computational Materials System Design. Springer, Cham. https://doi.org/10.1007/978-3-319-68280-8_9

Download citation

Publish with us

Policies and ethics