Skip to main content

Monitoring Mangrove Forest Changes in Cat Ba Biosphere Reserve Using ALOS PALSAR Imagery and a GIS-Based Support Vector Machine Algorithm

  • Conference paper
  • First Online:
Advances and Applications in Geospatial Technology and Earth Resources (GTER 2017)

Abstract

Cat Ba is one of the most well-known islands located in North Vietnam, which has been recognized as a biosphere reserve by United Nations Educational, Scientific and Cultural Organization (UNESCO) since 2004. Despite the large potential carbon stocks in mangrove forests of Cat Ba, the mangrove ecosystem of this island has suffered severe deforestation and forest degradation due to the conversion to shrimp aquaculture. Monitoring mangrove forest changes plays an important role for effective mangrove conservation and management. The objectives of this study were to map the spatial distribution of mangrove forest and to assess their changes between 2010 and 2015 in Cat Ba Biosphere Reserve, Hai Phong city of Vietnam using ALOS PALSAR data and a GIS-based support vector machine algorithm. For this purpose, ALOS PALSAR imagery for the above period and GIS data were collected. Then, spatial distributions of mangroves were derived using the support vector machine classifier. The results showed that the ALOS-2 PALSAR for 2015 achieves the overall accuracy of 85% and the kappa coefficient of 0.81, compared with those of 81% and 0.77, respectively from the ALOS PALSAR for 2010. The mangrove forest areas in the Cat Ba Biosphere Reserve, Vietnam decreased by 15% from 2010 to 2015. This research shows the potential use of ALOS PALSAR data combined with machine learning techniques in monitoring mangrove forest changes in tropical and semi-tropical climates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giri, C., Ochieng, E., Tieszen, L.L., Zhu, Z., Shingh, A., Loveland, T.: Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011)

    Article  Google Scholar 

  2. Barbier, E.B., Cox, M.: An economic analysis of shrimp farm expansion and mangrove conversion in Thailand. Land Econ. 80, 391–407 (2004)

    Article  Google Scholar 

  3. Donato, D.C., Kauffman, J.B., Murdiyarso, D., Kurnianto, S., Stidham, M., Kanninen, M.: Mangroves among the most carbon-rich forests in the tropics. Nature Geosci. 4, 293–297 (2011)

    Article  Google Scholar 

  4. Kauffman, J.B., Heider, C., Norfolk, J., Payton, F.: Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24, 518–527 (2013)

    Article  Google Scholar 

  5. Alongi, D.M.: Present state and future of the world’s mangrove forests. Environ. Conserv. 29, 331–349 (2002)

    Article  Google Scholar 

  6. FAO: The World’s mangroves 1980–2005. A thematic study prepared in the framework of the Global Forest Resources Assessment 2005. Food and Agriculture Organization of the United Nations (2007)

    Google Scholar 

  7. Tuan, L.X., Munekage, Y., Dao, Q.T.Q., Tho, N.H., Dao, P.T.A.: Environmental management in mangrove areas. Environ. Inform. Arch. 1, 38–52 (2003)

    Google Scholar 

  8. Conchedda, G., Durieux, L., Mayaux, P.: An object-based method for mapping and change analysis in mangrove ecosystems. ISPRS J. Photogramm. Remote Sens. 63, 578–589 (2008)

    Article  Google Scholar 

  9. Long, J.B., Giri, C.: Mapping the philippines’ mangrove forests using landsat imagery. Sensors 11, 2972–2981 (2011)

    Article  Google Scholar 

  10. Lucas, R.M., Mitchell, A.L., Rosenqvist, A., Proisy, C., Melius, A., Ticehurst, C.: The potential of L-band SAR for quantifying mangrove characteristics and change: case studies from the tropics. Aquat. Conserv. Mar. Freshw. Ecosyst. 17, 245–264 (2007)

    Article  Google Scholar 

  11. Tien Dat, P., Yoshino, K.: Mangrove analysis using ALOS imagery in Hai Phong City, Vietnam, pp. 85250U-1–85250U-8 (2012)

    Google Scholar 

  12. Tong, P.H.S., Auda, Y., Populus, J., Aizpuru, M., Habshi, A.A., Blasco, F.: Assessment from space of mangroves evolution in the Mekong Delta, in relation to extensive shrimp farming. Int. J. Remote Sens. 25, 4795–4812 (2004)

    Article  Google Scholar 

  13. Thu, P.M., Populus, J.: Status and changes of mangrove forest in Mekong Delta: Case study in Tra Vinh Vietnam. Estuar. Coast. Shelf Sci. 71, 98–109 (2007)

    Article  Google Scholar 

  14. Tran, L.X., Fischer, A.: Spatiotemporal changes and fragmentation of mangroves and its effects on fish diversity in Ca Mau Province (Vietnam). J. Coast. Conserv., 1–14 (2017)

    Google Scholar 

  15. Béland, M., Goïta, K., Bonn, F., Pham, T.T.H.: Assessment of land-cover changes related to shrimp aquaculture using remote sensing data: a case study in the Giao Thuy District, Vietnam. Int. J. Remote Sens. 27, 1491–1510 (2006)

    Article  Google Scholar 

  16. Nguyen-Thanh, S., Chi-Farn, C., Ni-Bin, C., Cheng-Ru, C., Ly-Yu, C., Bui-Xuan, T.: Mangrove mapping and change detection in Ca Mau Peninsula, Vietnam, using landsat data and object-based image analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 503–510 (2015)

    Article  Google Scholar 

  17. Vo, Q., Oppelt, N., Leinenkugel, P., Kuenzer, C.: Remote Sensing in mapping mangrove ecosystems—an object-based approach. Remote Sens. 5, 183 (2013)

    Article  Google Scholar 

  18. Binh, T.N.K.D., Vromant, N., Hung, N.T., Hens, L., Boon, E.K.: Land cover changes between 1968 and 2003 in Cai Nuoc, Ca Mau Peninsula, Vietnam. Environ. Dev. Sustain. 7, 519–536 (2005)

    Article  Google Scholar 

  19. Lu, D.: The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 27, 1297–1328 (2006)

    Article  Google Scholar 

  20. Mas, J.F.: Mapping land use/cover in a tropical coastal area using satellite sensor data, GIS and artificial neural networks. Estuar. Coast. Shelf Sci. 59, 219–230 (2004)

    Article  Google Scholar 

  21. Rogan, J., Franklin, J., Stow, D., Miller, J., Woodcock, C., Roberts, D.: Mapping land-cover modifications over large areas: a comparison of machine learning algorithms. Remote Sens. Environ. 112, 2272–2283 (2008)

    Article  Google Scholar 

  22. Petropoulos, G.P., Arvanitis, K., Sigrimis, N.: Hyperion hyperspectral imagery analysis combined with machine learning classifiers for land use/cover mapping. Expert Syst. Appl. 39, 3800–3809 (2011)

    Article  Google Scholar 

  23. Kamusoko, C., Gamba, J., Murakami, H.: Mapping woodland cover in the miombo ecosystem: a comparison of machine learning classifiers. Land 3, 524 (2014)

    Article  Google Scholar 

  24. Wang, L., Silván-Cárdenas, J.L., Sousa, W.P.: Neural network classification of mangrove species from multi-seasonal ikonos imagery. Photogramm. Eng. Remote Sens. 74, 921–927 (2008)

    Article  Google Scholar 

  25. Petropoulos, G.P., Kalaitzidis, C., Prasad Vadrevu, K.: Support vector machines and object-based classification for obtaining land-use/cover cartography from Hyperion hyperspectral imagery. Comput. Geosci. 41, 99–107 (2012)

    Article  Google Scholar 

  26. Nemmour, H., Chibani, Y.: Multiple support vector machines for land cover change detection: an application for mapping urban extensions. ISPRS J. Photogramm. Remote Sens. 61, 125–133 (2006)

    Article  Google Scholar 

  27. Ustuner, M., Sanli, F.B., Dixon, B.: Application of support vector machines for landuse classification using high-resolution rapideye images: a sensitivity analysis. Eur. J. Remote Sens. 48, 403–422 (2015)

    Article  Google Scholar 

  28. Mountrakis, G., Im, J., Ogole, C.: Support vector machines in remote sensing: a review. ISPRS J. Photogramm. Remote Sens. 66, 247–259 (2011)

    Article  Google Scholar 

  29. Mai, T., Smith, C.: Addressing the threats to tourism sustainability using systems thinking: a case study of Cat Ba Island, Vietnam. J. Sustain. Tour. 23, 1504–1528 (2015)

    Article  Google Scholar 

  30. Le Viet, T., Choisy, M., Bryant, J.E., Vu Trong, D., Pham Quang, T., Horby, P., Nguyen Tran, H., Tran Thi Kieu, H., Nguyen Vu, T., Nguyen Van, K., Le Quynh, M., Wertheim, H.F.: A dengue outbreak on a floating village at Cat Ba Island in Vietnam. BMC Pub. Health 15, 1–8 (2015)

    Google Scholar 

  31. Hoang, V., Lin, C.K.: Cat Ba National Park. Asian Institute of Technology, Bangkok (2001)

    Google Scholar 

  32. Pham, T.D., Yoshino, K.: Impacts of mangrove management systems on mangrove changes in the Northern Coast of Vietnam. Tropics 24, 141–151 (2016)

    Article  Google Scholar 

  33. Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D.B., Oimoen, M.J., Zhang, Z., Danielson, J.J., Krieger, T., Curtis, B., Haase, J.: ASTER global digital elevation model version 2-summary of validation results. NASA (2011)

    Google Scholar 

  34. JAXA: ALOS-2/PALSAR-2 Level 1.1/1.5/2.1/3.1 CEOS SAR Product Japan Aerospace Exploration Agency (2014)

    Google Scholar 

  35. Shimada, M., Isoguchi, O., Tadono, T., Isono, K.: PALSAR radiometric and geometric calibration. IEEE Trans. Geosci. Remote Sens. 47, 3915–3932 (2009)

    Article  Google Scholar 

  36. de Leeuw, M.R., de Carvalho, L.M.T.: Performance evaluation of several adaptive speckle filters for SAR imaging. Anais XIV Simpósio Brasileiro de Sensoriamento Remoto, pp. 7299–7305 (2009)

    Google Scholar 

  37. Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G.: High-resolution global maps of 21st-century forest cover change. Science 342, 850 (2013)

    Article  Google Scholar 

  38. Neha, J., Edward, T.A.M., Natalia, W., Jorge, T., Julian, M.-R., Andrea, E., Murray, C., Martin, R.J., Rasmus, F.: Mapping dynamics of deforestation and forest degradation in tropical forests using radar satellite data. Environ. Res. Lett. 10, 034014 (2015)

    Article  Google Scholar 

  39. Darmawan, S., Takeuchi, W., Vetrita, Y., Wikantika, K., Sari, D.K.: Impact of topography and tidal height on ALOS PALSAR polarimetric measurements to estimate aboveground biomass of mangrove forest in Indonesia. J. Sens. 2015, 13 (2015)

    Article  Google Scholar 

  40. Lucas, R., Armston, J., Fairfax, R., Fensham, R., Accad, A., Carreiras, J., Kelley, J., Bunting, P., Clewley, D., Bray, S., Metcalfe, D., Dwyer, J., Bowen, M., Eyre, T., Laidlaw, M., Shimada, M.: An evaluation of the ALOS PALSAR L-Band backscatter - above ground biomass relationship queensland, australia: impacts of surface moisture condition and vegetation structure. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 3, 576–593 (2010)

    Article  Google Scholar 

  41. Wang, Y., Hess, L.L., Filoso, S., Melack, J.M.: Understanding the radar backscattering from flooded and nonflooded Amazonian forests: results from canopy backscatter modeling. Remote Sens. Environ. 54, 324–332 (1995)

    Article  Google Scholar 

  42. Kasischke, E.S., Tanase, M.A., Bourgeau-Chavez, L.L., Borr, M.: Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data. Remote Sens. Environ. 115, 227–232 (2011)

    Article  Google Scholar 

  43. Heumann, B.W.: An object-based classification of mangroves using a hybrid decision tree—support vector machine approach. Remote Sens. 3, 2440–2460 (2011)

    Article  Google Scholar 

  44. Kanniah, K., Sheikhi, A., Cracknell, A., Goh, H., Tan, K., Ho, C., Rasli, F.: Satellite images for monitoring mangrove cover changes in a fast growing economic region in Southern Peninsular Malaysia. Remote Sens. 7, 14360 (2015)

    Article  Google Scholar 

  45. Nong, D., Fox, J., Miura, T., Saksena, S.: Built-up area change analysis in hanoi using support vector machine classification of landsat multi-temporal image stacks and population data. Land 4, 1213 (2015)

    Article  Google Scholar 

  46. Huang, C., Song, K., Kim, S., Townshend, J.R.G., Davis, P., Masek, J.G., Goward, S.N.: Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens. Environ. 112, 970–985 (2008)

    Article  Google Scholar 

  47. EX User’s: ENVI on-line software user’s manual. ITT Visual Information Solutions (2008)

    Google Scholar 

  48. Pham, T.D., Yoshino, K., Bui, D.T.: Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. GISci. Remote Sens. 54, 329–353 (2017)

    Article  Google Scholar 

  49. Stehman, S.V.: Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 62, 77–89 (1997)

    Article  Google Scholar 

  50. Jensen, J.R.: Introductory Digital Image Processing: A Remote Sensing Perspective. Prentice-Hall Inc., Upper Saddle River (1996)

    Google Scholar 

  51. Congalton, R.G., Green, K.: Assessing the accuracy of remotely sensed data - Principles and Practices. Lewis Publishers, New York (1999)

    Google Scholar 

  52. Tien Dat, P., Kunihiko, Y.: Characterization of mangrove species using ALOS-2 PALSAR in Hai Phong city, Vietnam. IOP Conf. Ser. Earth Environ. Sci. 37, 012036 (2016)

    Article  Google Scholar 

  53. Qiu, F., Berglund, J., Jensen, J.R., Thakkar, P., Ren, D.: Speckle noise reduction in SAR imagery using a local adaptive median filter. GISci. Remote Sens. 41, 244–266 (2004)

    Article  Google Scholar 

  54. Zhong, H., Li, Y., Jiao, L.: SAR image despeckling using bayesian nonlocal means filter with sigma preselection. IEEE Geosci. Remote Sens. Lett. 8, 809–813 (2011)

    Article  Google Scholar 

  55. Zhu, H.M., Zhong, W.Q., Jiao, L.C.: Combination of target detection and block-matching 3D filter for despeckling SAR images. Electron. Lett. 49, 495–497 (2013)

    Article  Google Scholar 

  56. Giri, C., Long, J., Abbas, S., Murali, R.M., Qamer, F.M., Pengra, B., Thau, D.: Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manage. 148, 101–111 (2015)

    Article  Google Scholar 

  57. Richards, D.R., Friess, D.A.: Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. 113, 344–349 (2016)

    Article  Google Scholar 

  58. Dat, P.T., Yoshino, K.: Monitoring mangrove forest using multi-temporal satellite data in the northern coast of Vietnam. In: The 32nd Asian Conference on Remote Sensing (2011)

    Google Scholar 

  59. Pham, T.D., Yoshino, K.: Mangrove mapping and change detection using multi-temporal landsat imagery in Hai Phong city, Vietnam. In: International Symposium on Cartography in Internet and Ubiquitous Environments 2015 (2015)

    Google Scholar 

  60. Seto, K.C., Fragkias, M.: Mangrove conversion and aquaculture development in Vietnam: a remote sensing-based approach for evaluating the Ramsar Convention on Wetlands. Glob. Environ. Change 17, 486–500 (2007)

    Article  Google Scholar 

  61. Dat, P.T., Yoshino, K.: Comparing mangrove forest management in Hai Phong City, Vietnam towards sustainable aquaculture. Proc. Environ. Sci. 17, 109–118 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CARES (Centre for Agricultural Researches and Ecological Studies) of Vietnam National University of Agriculture (VNUA), Vietnam for providing spatial data for this research and logistical support during the fieldwork of this research. We are highly thankful to MEXT (Ministry of Education, Culture, Sports, Science, and Technology) of the Japanese Government for financial support to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien Dat Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Pham, T.D., Yoshino, K., Kaida, N. (2018). Monitoring Mangrove Forest Changes in Cat Ba Biosphere Reserve Using ALOS PALSAR Imagery and a GIS-Based Support Vector Machine Algorithm. In: Tien Bui, D., Ngoc Do, A., Bui, HB., Hoang, ND. (eds) Advances and Applications in Geospatial Technology and Earth Resources. GTER 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-68240-2_7

Download citation

Publish with us

Policies and ethics