Skip to main content

Unsolved Problems

  • Chapter
  • First Online:
Acoustic Cavitation and Bubble Dynamics

Part of the book series: SpringerBriefs in Molecular Science ((ULSONO))

Abstract

Although acoustic cavitation and bubble dynamics have been studied for more than 100 years, this field is still very active and there are a variety of unsolved problems. The old problem on cavitation nuclei is now in the spotlight because of the mysteries of bulk nanobubbles. With regard to sonochemical products, ammonia (NH3) and oxygen atom (O) have not yet been fully studied. At the final moment of bubble collapse, solidification of water may take place near the bubble wall by the high pressure. A related unsolved problem is the mechanism of sonocrystallization that crystal nucleation is accelerated by acoustic cavitation. Plasma formation inside a sonoluminescing bubble has been confirmed by the spectroscopic observation. Is there a hot plasma core formed by shock wave focusing at the center of a bubble? What is quantitative theory of ionization-potential lowering inside a bubble nearly at liquid density? Why is the vibrational population distribution of OH radicals strongly in non-equilibrium inside a bubble? What are the roles of pulsed ultrasound and liquid surface vibration in acoustic field in the liquid? Is there any effect of a magnetic field on bubble dynamics? Are the extreme conditions inside a dissolving bubble real?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fisher JC (1948) The fracture of liquids. J Appl Phys 19:1062–1067. doi:10.1063/1.1698012

    Article  Google Scholar 

  2. Temperley HNV (1947) The behaviour of water under hydrostatic tension: III. Proc Phys Soc London 59:199–208. doi:10.1088/0959-5309/59/2/304

    Article  CAS  Google Scholar 

  3. Yasui K (2015) Dynamics of acoustic bubbles. In: Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam

    Google Scholar 

  4. Galloway WJ (1954) An experimental study of acoustically induced cavitation in liquids. J Acoust Soc Am 26:849–857. doi:10.1121/1.1907428

    Article  Google Scholar 

  5. Epstein PS, Plesset MS (1950) On the stability of gas bubbles in liquid-gas solutions. J Chem Phys 18:1505–1509. doi:10.1063/1.1747520

    Article  CAS  Google Scholar 

  6. Alheshibri M, Qian J, Jehannin M, Craig VSJ (2016) A history of nanobubbles. Langmuir 32:11086–11100. doi:10.1021/acs.langmuir.6b02489

    Article  CAS  Google Scholar 

  7. Kobayashi H, Maeda S, Kashiwa M, Fujita T (2014) Measurement and identification of ultrafine bubbles by resonant mass measurement method. Proc SPIE 9232:92320S. doi:10.1117/12.2064811

    Article  Google Scholar 

  8. Kobayashi H, Maeda S, Kashiwa M, Fujita T (2014) Measurement of ultrafine bubbles using different types of particle size measuring instruments. Proc SPIE 9232:92320U. doi:10.1117/12.2064638

    Article  Google Scholar 

  9. Tuziuti T, Yasui K, Kanematsu W (2017) Influence of increase in static pressure on bulk nanobubbles. Ultrason Sonochem 38:347–350. doi:10.1016/j.ultsonch.2017.03.036

    Article  CAS  Google Scholar 

  10. Tsuge H (ed) (2014) Micro- and nanobubbles. Pan Stanford, Singapore

    Google Scholar 

  11. Yount DE (1979) Skins of varying permeability: a stabilization mechanism for gas cavitation nuclei. J Acoust Soc Am 65:1429–1439. doi:10.1121/1.382930

    Article  Google Scholar 

  12. Fox FE, Herzfeld KF (1954) Gas bubbles with organic skin as cavitation nuclei. J Acoust Soc Am 26:984–989. doi:10.1121/1.1907466

    Article  Google Scholar 

  13. Yasui K (2016) Mechanism for stability of ultrafine bubbles. Jpn J Multiph Flow 30:19–26 (in Japanese)

    Google Scholar 

  14. Takahashi M (2005) ζ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. J Phys Chem B 109:21858–21864. doi:10.1021/jp0445270

    Article  CAS  Google Scholar 

  15. Oh SH, Han JG, Kim JM (2015) Long-term stability of hydrogen nanobubble fuel. Fuel 158:399–404. doi:10.1016/j.fuel.2015.05.072

    Article  CAS  Google Scholar 

  16. Cho SH, Kim JY, Chun JH, Kim JD (2005) Ultrasonic formation of nanobubbles and their zeta-potentials in aqueous electrolyte and surfactant solutions. Colloids Surf, A 269:28–34. doi:10.1016/j.colsurfa.2005.06.063

    Article  CAS  Google Scholar 

  17. Kim JY, Song MG, Kim JD (2000) Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions. J Colloid Interface Sci 223:285–291. doi:10.1006/jcis.1999.6663

    Article  CAS  Google Scholar 

  18. Steitz R, Gutberlet T, Hauss T, Klosgen B, Krastev R, Schemmel S, Simonsen AC, Findenegg GH (2003) Nanobubbles and their precursor layer at the interface of water against a hydrophobic substrate. Langmuir 19:2409–2418. doi:10.1021/la026731p

    Article  CAS  Google Scholar 

  19. Mezger M, Schoder S, Reichert H, Schroder H, Okasinski J, Honkimaki V, Ralston J, Bilgram J, Roth R, Dosch H (2008) J Chem Phys 128:244705. doi:10.1063/1.2931574

    Article  CAS  Google Scholar 

  20. Lu YH, Yang CW, Hwang IS (2012) Molecular layer of gaslike domains at a hydrophobic-water interface observed by frequency-modulation atomic force microscopy. Langmuir 28:12691–12695. doi:10.1021/la301671a

    Article  CAS  Google Scholar 

  21. Peng H, Birkett GR, Nguyen AV (2013) Origin of interfacial nanoscopic gaseous domains and formation of dense gas layer at hydrophobic solid-water interface. Langmuir 29:15266–15274. doi:10.1021/la403187p

    Article  CAS  Google Scholar 

  22. Azadi M, Nguyen AV, Yakubov GE (2015) Attractive forces between hydrophobic solid surfaces measured by AFM on the first approach in salt solutions and in the presence of dissolved gases. Langmuir 31:1941–1949. doi:10.1021/la504001z

    Article  CAS  Google Scholar 

  23. Peng H, Hampton MA, Nguyen AV (2013) Nanobubbles do not sit alone at the solid-liquid interface. Langmuir 29:6123–6130. doi:10.1021/la305138v

    Article  CAS  Google Scholar 

  24. Yasui K, Tuziuti T, Kanematsu W, Kato K (2016) Dynamic equilibrium model for a bulk nanobubble and a microbubble partly covered with hydrophobic material. Langmuir 32:11101–11110. doi:10.1021/acs.langmuir.5b04703

    Article  CAS  Google Scholar 

  25. Yasui K, Tuziuti T, Kanematsu W, Kato K (2015) Advanced dynamic-equilibrium model for a nanobubble and a micropancake on a hydrophobic or hydrophilic surface. Phys Rev E 91:033008. doi:10.1103/PhysRevE.91.033008

    Article  CAS  Google Scholar 

  26. Petsev ND, Shell MS, Leal LG (2013) Dynamic equilibrium explanation for nanobubbles’ unusual temperature and saturation dependence. Phys Rev E 88:010402(R). doi:10.1103/PhysRevE.88.010402

    Article  CAS  Google Scholar 

  27. Israelachvili JN (2011) Intermolecular and surface forces, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  28. Lee J, Tuziuti T, Yasui K, Kentish S, Grieser F, Ashokkumar M, Iida Y (2007) Influence of surface-active solutes on the coalescence, clustering, and fragmentation of acoustic bubbles confined in a microspace. J Phys Chem C 111:19015–19023. doi:10.1021/jp075431j

    Article  CAS  Google Scholar 

  29. Chan CU, Ohl CD (2012) Total-internal-reflection-fluorescence microscopy for the study of nanobubble dynamics. Phys Rev Lett 109:174501. doi:10.1103/PhysRevLett.109.174501

    Article  CAS  Google Scholar 

  30. Dietrich E, Zandvliet HJW, Lohse D, Seddon JRT (2013) Particle tracking around surface nanobubble. J Phys: Condens Matter 25:184009. doi:10.1088/0953-8984/25/18/184009

    Google Scholar 

  31. Lohse D, Zhang X (2015) Surface nanobubbles and nanodroplets. Rev Mod Phys 87:981–1035. doi:10.1103/RevModPhys.87.981

    Article  CAS  Google Scholar 

  32. Brenner MP, Lohse D (2008) Dynamic equilibrium mechanism for surface nanobubble stabilization. Phys Rev Lett 101:214505. doi:10.1103/PhysRevLett.101.214505

    Article  CAS  Google Scholar 

  33. Modell M, Reid RC (1974) Thermodynamics and its applications. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  34. Kondepudi D, Prigogine I (1998) Modern thermodynamics. John Wiley & Sons, Chichester, UK

    Google Scholar 

  35. Lohse D, Zhang X (2015) Pinning and gas oversaturation imply stable single surface nanobubble. Phys Rev E 91:031003 (R). doi:10.1103/PhysRevE.91.031003

  36. Ouerhani T, Pflieger R, Messaoud WB, Nikitenko SI (2015) Spectroscopy of sonoluminescence and sonochemistry in water saturated with N2–Ar mixtures. J Phys Chem B 119:15885–15891. doi:10.1021/acs.jpcb.5b10221

    Article  CAS  Google Scholar 

  37. Hart EJ, Fischer CH, Henglein A (1986) Isotopic exchange in the sonolysis of aqueous solutions containing 14,14N2 and 15,15N2. J Phys Chem 90:5989–5991. doi:10.1021/j100280a104

    Article  CAS  Google Scholar 

  38. Supeno Kruus P (2002) Fixation of nitrogen with cavitation. Ultrason Sonochem 9:53–59. doi:10.1016/S1350-4177(01)60070-0

    Article  CAS  Google Scholar 

  39. Sokol’skaya AV (1978) Synthesis of glycine from formaldehyde and molecular nitrogen in aqueous solutions in an ultrasonic field. J Gen Chem USSR 48:1289–1292

    Google Scholar 

  40. Hickling R, Plesset MS (1964) Collapse and rebound of a spherical bubble in water. Phys Fluids 7:7–14. doi:10.1063/1.1711058

    Article  Google Scholar 

  41. Hickling R (1994) Transient, high-pressure solidification associated with cavitation in water. Phys Rev Lett 73:2853–2856. doi:10.1103/PhysRevLett.73.2853

    Article  CAS  Google Scholar 

  42. Hickling R (1965) Nucleation of freezing by cavity collapse and its relation to cavitation damage. Nature (London) 206:915–917. doi:10.1038/206915a0

    Article  Google Scholar 

  43. Sukovich JR, Anderson PA, Sampathkumar A, Gaitan DF, Pishchalnikov YA, Holt RG (2017) Outcomes of the collapse of a large bubble in water at high ambient pressures. Phys Rev E 95:043101. doi:10.1103/PhysRevE.95.043101

    Article  Google Scholar 

  44. Chow R, Blindt R, Chivers R, Povey M (2003) The sonocrystallisation of ice in sucrose solutions: primary and secondary nucleation. Ultrasonics 41:595–604. doi:10.1016/j.ultras.2003.08.001

    Article  CAS  Google Scholar 

  45. Chow R, Mettin R, Lindinger B, Kurz T, Lauterborn W (2003) The importance of acoustic cavitation in the sonocrystallisation of ice—high speed observation of a single acoustic bubble. In: 2003 IEEE Ultrasonics Symposium Proceeding, vol 2 pp 1447–1450. doi:10.1109/ULTSYM.2003.1293177

  46. Chow R, Blindt R, Kamp A, Grocutt P, Chivers R (2004) The microscopic visualization of the sonocrystallisation of ice using a novel ultrasonic cold stage. Ultrason Sonochem 11:245–250. doi:10.1016/j.ultsonch.2004.01.018

    Article  CAS  Google Scholar 

  47. Chow R, Blindt R, Chivers R, Povey M (2005) A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics 43:227–230. doi:10.1016/j.ultras.2004.06.006

    Article  CAS  Google Scholar 

  48. Lindinger B, Mettin R, Chow R, Lauterborn W (2007) Ice crystallization induced by optical breakdown. Phys Rev Lett 99:045701. doi:10.1103/PhysREvLett.99.045701

    Article  CAS  Google Scholar 

  49. Wohlgemuth K, Ruether F, Schembecker G (2010) Sonocrystallization and crystallization with gassing of adipic acid. Chem Eng Sci 65:1016–1027. doi:10.1016/j.ces.2009.09.055

    Article  CAS  Google Scholar 

  50. Soare A, Dijkink R, Pascual MR, Sun C, Cains PW, Lohse D, Stankiewicz AI, Kramer HJM (2011) Crystal nucleation by laser-induced cavitation. Cryst Growth Des 11:2311–2316. doi:10.1021/cg2000014

    Article  CAS  Google Scholar 

  51. Jamshidi R, Rossi D, Saffari N, Gavriilidis A, Mazzei L (2016) Investigation of the effect of ultrasound parameters on continuous sonocrystallization in a millifluidic device. Cryst Growth Des 16:4607–4619. doi:10.1021/acs.cgd.6b00696

    Article  CAS  Google Scholar 

  52. Castillo-Peinado LS, Dolores M, Castro L (2016) The role of ultrasound in pharmaceutical production: sonocrystallization. J Pharm Pharmacol 68:1249–1267. doi:10.1111/jphp.12614

    Article  CAS  Google Scholar 

  53. Bhangu SK, Ashokkumar M, Lee J (2016) Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control. Cryst Growth Des 16:1934–1941. doi:10.1021/acs.cgd.5b01470

    Article  CAS  Google Scholar 

  54. Wohlgemuth K, Kordylla A, Ruether F, Schembecker G (2009) Experimental study of the effect of bubbles on nucleation during batch cooling crystallization. Chem Eng Sci 64:4155–4163. doi:10.1016/j.ces.2009.06.041

    Article  CAS  Google Scholar 

  55. Kordylla A, Krawczyk T, Tumakaka F, Schembecker G (2009) Modeling ultrasound-induced nucleation during cooling crystallization. Chem Eng Sci 64:1635–1642. doi:10.1016/j.ces.2008.12.030

    Article  CAS  Google Scholar 

  56. Yasui K, Tuziuti T, Kato K (2011) Numerical simulations of sonochemical production of BaTiO3 nanoparticles. Ultrason Sonochem 18:1211–1217. doi:10.1016/j.ultsonch.2011.03.006

    Article  CAS  Google Scholar 

  57. Moss WC, Clarke DB, Young DA (1997) Calculated pulse widths and spectra of a single sonoluminescing bubble. Science 276:1398–1401. doi:10.1126/science.276.5317.1398

    Article  CAS  Google Scholar 

  58. Moss WC, Young DA, Harte JA, Levatin JL, Rozsnyai BF, Zimmerman GB, Zimmerman IH (1999) Computed optical emissions from a sonoluminescing bubble. Phys Rev E 59:2986–2992. doi:10.1103/PhysRevE.59.2986

    Article  CAS  Google Scholar 

  59. Burnett PDS, Chambers DM, Heading D, Machacek A, Moss WC, Rose S, Schnittker M, Lee RW, Young P, Wark JS (2001) Modeling a sonoluminescing bubble as a plasma. J Quant Spectro Radiat Transfer 71:215–223. doi:10.1016/S0022-4073(01)00069-3

    Article  CAS  Google Scholar 

  60. Flannigan DJ, Suslick KS (2005) Plasma formation and temperature measurement during single-bubble cavitation. Nature (London) 434:52–55. doi:10.1038/nature03361

    Article  CAS  Google Scholar 

  61. Eddingsaas NC, Suslick KS (2007) Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. J Am Chem Soc 129:3838–3839. doi:10.1021/ja070192z

    Article  CAS  Google Scholar 

  62. Fridman A (2008) Plasma chemistry. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  63. Atkins PW, Friedman RS (1997) Molecular quantum mechanics. Oxford Univ Press, Oxford

    Google Scholar 

  64. Peratt AL (2015) Physics of the plasma universe, 2nd edn. Springer, New York

    Google Scholar 

  65. Salzmann D (1998) Atomic physics in hot plasmas. Oxford Univ Press, Oxford

    Google Scholar 

  66. Chen FF (2016) Introduction to plasma physics and controlled fusion, 3rd edn. Springer, Cham, Switzerland

    Book  Google Scholar 

  67. Craxton RS, Anderson KS, Boehly TR, Goncharov VN, Harding DR, Knauer JP, McCrory RL, McKenty PW, Meyerhofer DD, Myatt JF, Schmitt AJ, Sethian JD, Short RW, Skupsky S, Theobald W, Kruer WL, Tanaka K, Betti R, Collins TJB, Delettrez JA, Hu SX, Marozas JA, Maximov AV, Michel DT, Radha PB, Regan SP, Sangster TC, Seka W, Solodov AA, Soures JM, Stoeckl JM, Zuegel JD (2015) Direct-drive inertial confinement fusion: a review. Phys Plasmas 22:110501. doi:10.1063/1.4934714

    Article  CAS  Google Scholar 

  68. Taleyarkhan RP, West CD, Cho JS, Lahey RT Jr, Nigmatulin RI, Block RC (2002) Evidence for nuclear emissions during acoustic cavitation. Science 295:1868–1873. doi:10.1126/science.1067589

    Article  CAS  Google Scholar 

  69. Taleyarkhan RP, Cho JS, West CD, Lahey RT Jr, Nigmatulin RI, Block RC (2004) Additional evidence of nuclear emissions during acoustic cavitation. Phys Rev E 69:036109. doi:10.1103/PhysRevE.69.036109

    Article  CAS  Google Scholar 

  70. Taleyarkhan RP, West CD, Lahey RT Jr, Nigmatulin RI, Block RC, Xu Y (2006) Nuclear emissions during self-nucleated acoustic cavitation. Phys Rev Lett 96:034301. doi:10.1103/PhysRevLett.96.034301

    Article  CAS  Google Scholar 

  71. Xu Y, Butt A (2005) Confirmatory experiments for nuclear emissions during acoustic cavitation. Nuclear Eng Design 235:1317–1324. doi:10.1016/j.nucengdes.2005.02.021

    Article  CAS  Google Scholar 

  72. Camara CG, Hopkins SD, Suslick KS, Putterman SJ (2007) Upper bound for neutron emission from sonoluminescing bubbles in deuterated acetone. Phys Rev Lett 98:064301. doi:10.1103/PhysRevLett.98.064301

    Article  CAS  Google Scholar 

  73. Toriyabe Y, Yoshida E, Kasagi J, Fukuhara M (2012) Acceleration of the d + d reaction in metal lithium acoustic cavitation with deuteron bombardment from 30 to 70 keV. Phys Rev C 85:054620. doi:10.1103/PhysRevC.85.054620

    Article  CAS  Google Scholar 

  74. Zel’dovich YB, Raizer YP (2002) Physics of shock waves and high-temperature hydrodynamic phenomena. Dover, Mineola, New York

    Google Scholar 

  75. Ashcroft NW, Mermin ND (1976) Solid state physics. Sounders College, Philadelphia

    Google Scholar 

  76. Kappus B, Bataller A, Putterman SJ (2013) Energy balance for a sonoluminescence bubble yields a measure of ionization potential lowering. Phys Rev Lett 111:234301. doi:10.1103/PhysRevLett.111.234301

    Article  CAS  Google Scholar 

  77. Kappus B, Khalid S, Chakravarty A, Putterman S (2011) Phase transition to an opaque plasma in a sonoluminescing bubble. Phys Rev Lett 106:234302. doi:10.1103/PhysREvLett.106.234302

    Article  CAS  Google Scholar 

  78. Yasui K (2001) Effect of liquid temperature on sonoluminescence. Phys Rev E 64:016310. doi:10.1103/PhysRevE.64.016310

    Article  CAS  Google Scholar 

  79. Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2008) The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys 128:184705. doi:10.1063/1.2919119

    Article  CAS  Google Scholar 

  80. Gaydon AG, Wolfhard HG (1951) Predissociation in the spectrum of OH; the vibrational and rotational intensity distribution in flames. Proc Roy Soc A 208:63–75. doi:10.1098/rspa.1951.0144

    Article  CAS  Google Scholar 

  81. Broida HP, Shuler KE (1952) Kinetics of OH radicals from flame emission spectra. IV. A study of the hydrogen-oxygen flame. J Chem Phys 20:168–174. doi:10.1063/1.1700163

    Article  CAS  Google Scholar 

  82. Charton M, Gaydon AG (1958) Excitation of spectra of OH in hydrogen flames and its relation to excess concentrations of free atoms. Proc Roy Soc A 245:84–92. doi:10.1098/rspa.1958.0068

    Article  CAS  Google Scholar 

  83. Kaskan WE (1959) Abnormal excitation of OH in H2/O2/N2 flames. J Chem Phys 31:944–956. doi:10.1063/1.1730556

    Article  CAS  Google Scholar 

  84. Belles FE, Lauver MR (1964) Origin of OH chemiluminescence during the induction period of the H2–O2 reaction behind shock waves. J Chem Phys 40:415–422. doi:10.1063/1.1725129

    Article  CAS  Google Scholar 

  85. Gutman D, Lutz RW, Jacobs NF, Hardwidge EA, Schott GL (1968) Shock-tube study of OH chemiluminescence in the hydrogen-oxygen reaction. J Chem Phys 48:5689–5694. doi:10.1063/1.1668656

    Article  CAS  Google Scholar 

  86. Davis MG, McGregor WK, Mason AA (1974) OH chemiluminescent radiation from lean hydrogen-oxygen flames. J Chem Phys 61:1352–1356. doi:10.1063/1.1682059

    Article  CAS  Google Scholar 

  87. Hidaka Y, Takahashi S, Kawano H, Suga M, Gardiner WC Jr (1982) Shock-tube measurement of the rate constant for excited OH(A2Σ+) formation in the hydrogen-oxygen reaction. J Phys Chem 86:1429–1433. doi:10.1021/j100397a043

    Article  CAS  Google Scholar 

  88. Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602–2605. doi:10.1103/PhysRevLett.75.2602

    Article  CAS  Google Scholar 

  89. Pflieger R, Brau HP, Nikitenko SI (2010) Sonoluminescence from OH(C 2Σ+) and OH(A 2Σ+) radicals in water: evidence for plasma formation during multibubble cavitation. Chem Eur J 16:11801–11803. doi:10.1002/chem.201002170

    Article  CAS  Google Scholar 

  90. Ndiaye AA, Pflieger R, Siboulet B, Molina J, Dufreche JF, Nikitenko SI (2012) Nonequilibrium vibrational excitation of OH radicals generated during multibubble cavitation in water. J Phys Chem A 116:4860–4867. doi:10.1021/jp301989b

    Article  CAS  Google Scholar 

  91. Flannigan DJ, Suslick KS (2013) Non-Boltzmann population distributions during single-bubble sonoluminescence. J Phys Chem B 117:15886–15893. doi:10.1021/jp409222x

    Article  CAS  Google Scholar 

  92. Pflieger R, Ndiaye AA, Chave T, Nikitenko SI (2015) Influence of ultrasonic frequency on swan band sonoluminescence and sonochemical activity in aqueous tert-butyl alcohol solutions. J Phys Chem B 119:284–290. doi:10.1021/jp509898p

    Article  CAS  Google Scholar 

  93. Nikitenko SI, Pflieger R (2017) Toward a new paradigm for sonochemistry: short review on nonequilibrium plasma observations by means of MBSL spectroscopy in aqueous solutions. Ultrason Sonochem 35:623–630. doi:10.1016/j.ultsonch.2016.02.003

    Article  CAS  Google Scholar 

  94. Young JB, Nelson JA, Kang W (2001) Line emission in single-bubble sonoluminescence. Phys Rev Lett 86:2673–2676. doi:10.1103/PhysRevLett.86.2673

    Article  CAS  Google Scholar 

  95. Luque J, Crosley DR (1998) Transition probabilities in the A 2Σ+X 2Π i electronic system of OH. J Chem Phys 109:439–448. doi:10.1063/1.476582

    Article  CAS  Google Scholar 

  96. McQuarrie DA, Simon JD (1997) Physical chemistry: a molecular approach. University Science, Sausalito

    Google Scholar 

  97. Atkins P, Paula J (2014) Atkins’ physical chemistry, 10th edn. Oxford University Press, Oxford

    Google Scholar 

  98. Yasui K (2002) Segregation of vapor and gas in a sonoluminescing bubble. Ultrasonics 40:643–647. doi:10.1016/S0041-624X(02)00190-7

    Article  CAS  Google Scholar 

  99. McNamara WB III, Didenko YT, Suslick KS (1999) Sonoluminescence temperatures during multi-bubble cavitation. Nature (London) 401:772–775

    Article  CAS  Google Scholar 

  100. Didenko YT, McNamara WB III, Suslick KS (2000) Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Phys Rev Lett 84:777–780. doi:10.1103/PhysRevLett.84.777

    Article  CAS  Google Scholar 

  101. Okitsu K, Suzuki T, Takenaka N, Bandow H, Nishimura R, Maeda Y (2006) Acoustic multibubble cavitation in water: a new aspect of the effect of a rare gas atmosphere on bubble temperature and its relevance to sonochemsitry. J Phys Chem B 110:20081–20084. doi:10.1021/jp064598u

    Article  CAS  Google Scholar 

  102. Mavrodineanu R, Boiteux H (1965) Flame spectroscopy. John Wiley & Sons, New York

    Google Scholar 

  103. Yasui K (1997) Alternative model of single-bubble sonoluminescence. Phys Rev E 56:6750–6760. doi:10.1103/PhysREvE.56.6750

    Article  CAS  Google Scholar 

  104. Storey BD, Szeri AJ (2000) Water vapour, sonoluminescence and sonochemistry. Proc R Soc Lond A 456:1685–1709. doi:10.1098/rspa.2000.0582

    Article  CAS  Google Scholar 

  105. Storey BD, Szeri AJ (2001) A reduced model of cavitation physics for use in sonochemistry. Proc R Soc Lond A 457:1685–1700. doi:10.1098/rspa.2001.0784

    Article  CAS  Google Scholar 

  106. Toegel R, Lohse D (2003) Phase diagrams for sonoluminescing bubbles: a comparison between experiment and theory. J Chem Phys 118:1863–1875. doi:10.1063/1.1531610

    Article  CAS  Google Scholar 

  107. Yasui K, Tuziuti T, Sivakumar M, Iida Y (2005) Theoretical study of single-bubble sonochemistry. J Chem Phys 122:224706. doi:10.1063/1.1925607

    Article  CAS  Google Scholar 

  108. Yasui K, Tuziuti T, Kozuka T, Towata A, Iida Y (2007) Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound. J Chem Phys 127:154502. doi:10.1063/1.2790420

    Article  CAS  Google Scholar 

  109. Yasui K (2016) Unsolved problems in acoustic cavitation. In: Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (eds) Handbook of ultrasonics and sonochemistry. Springer, Singapore

    Google Scholar 

  110. Yasui K (2001) Temperature in multibubble sonoluminescence. J Chem Phys 115:2893–2896. doi:10.1063/1.1395056

    Article  CAS  Google Scholar 

  111. Didenko YT, Pugach SP (1994) Spectra of water sonoluminescence. J Phys Chem 98:9742–9749. doi:10.1021/j100090a006

    Article  CAS  Google Scholar 

  112. Dahnke S, Keil F (1998) Modeling of sound fields in liquids with a nonhomogeneous distribution of cavitation bubbles as a basis for the design of sonochemical reactors. Chem Eng Technol 21:873–877. doi:10.1002/(SICI)1521-4125(199811)21:11<873:AID-CEAT873>3.0.CO;2-V

    Article  Google Scholar 

  113. Yasui K, Kozuka T, Tuziuti T, Towata A, Iida Y, King J, Macey P (2007) FEM calculation of an acoustic field in a sonochemical reactor. Ultrason Sonochem 14:605–614. doi:10.1016/j.ultsonch.2006.09.010

    Article  CAS  Google Scholar 

  114. Tuziuti T, Yasui K, Lee J, Kozuka T, Towata A, Iida Y (2008) Mechanism of enhancement of sonochemical-reaction efficiency by pulsed ultrasound. J Phys Chem A 112:4875–4878. doi:10.1021/jp802640x

    Article  CAS  Google Scholar 

  115. Tuziuti T, Yasui K, Kozuka T, Towata A (2010) Influence of liquid-surface vibration on sonochemiluminescence intensity. J Phys Chem A 114:7321–7325. doi:10.1021/jp101638c

    Article  CAS  Google Scholar 

  116. Young JB, Schmiedel T, Kang W (1996) Sonoluminescence in high magnetic fields. Phys Rev Lett 77:4816–4819. doi:10.1103/PhysRevLett.77.4816

    Article  CAS  Google Scholar 

  117. Abe Y, Nakabayashi S (2002) SBSL dynamics under high magnetic field. In: Proceeding International Symposium on Innovative Materials Processing by Controlling Chemical Reaction Field (IMP2002), The Society of Non-Traditional Technology, Tokyo, pp 17–20

    Google Scholar 

  118. Brenner MP, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74:425–484. doi:10.1103/RevModPhys.74.425

    Article  CAS  Google Scholar 

  119. Yasui K (1999) Effect of a magnetic field on sonoluminescence. Phys Rev E 60:1759–1761. doi:10.1103/PhysRevE.60.1759

    Article  CAS  Google Scholar 

  120. Biedenkapp D, Hartshorn LG, Bair EJ (1970) The O (1D) + H2O reaction. Chem Phys Lett 5:379–380. doi:10.1016/0009-2614(70)85172-7

    Article  CAS  Google Scholar 

  121. Takahashi M, Chiba K, Li P (2007) Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. J Phys Chem B 111:1343–1347. doi:10.1021/jp0669254

    Article  CAS  Google Scholar 

  122. Liu S, Oshita S, Makino Y, Wang QH, Kawagoe Y, Uchida T (2016) Oxidative capacity of nanobubbles and its effect on seed germination. ACS Sustain Chem Eng 4:1347–1353. doi:10.1021/acssuschemeng.5b01368

    Article  CAS  Google Scholar 

  123. Liu S, Oshita S, Kawabata S, Makino Y, Yoshimoto T (2016) Identification of ROS produced by nanobubbles and their positive and negative effects on vegetable seed germination. Langmuir 32:11295–11302. doi:10.1021/acs.langmuir.6b01621

    Article  CAS  Google Scholar 

  124. Yasui K, Tuziuti T, Kanematsu W (2016) Extreme conditions in a dissolving air nanobubble. Phys Rev E 94:013106. doi:10.1103/PhysRevE.94.013106

    Article  CAS  Google Scholar 

  125. Winsberg E (2010) Science in the age of computer simulation. University of Chicago Press, Chicago

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyuichi Yasui .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Yasui, K. (2018). Unsolved Problems. In: Acoustic Cavitation and Bubble Dynamics. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-68237-2_3

Download citation

Publish with us

Policies and ethics