Acoustic Cavitation

  • Kyuichi Yasui
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Acoustic cavitation is the formation and subsequent violent collapse of bubbles in liquid irradiated with intense ultrasound. Ultrasound is radiated by a vibrating plate connected to ultrasonic transducers made of piezoelectric materials driven by electrical power. Microscopic mechanism for vibration of piezoelectric materials is briefly described. There are two types of ultrasonic experimental equipment used to generate acoustic cavitation: ultrasonic horn (or probe) and ultrasonic bath. Ultrasonic standing waves and traveling waves are discussed by means of mathematical equations. Acoustic impedance is discussed, and transmission and reflection coefficients are described. Various types of acoustic cavitations are discussed: transient and stable cavitations, vaporous and gaseous cavitations. Fluctuations in degassing and re-gassing cause repeated change between vaporous and gaseous cavitation. Light emission associated with violent bubble collapse as well as chemical reactions inside and outside a bubble is discussed in the sections entitled “sonoluminescence” and “sonochemistry,” respectively. Unsolved problems in sonoluminescence are briefly discussed. Reasons for lesser amount of produced H radicals (H·) than that of OH radicals (OH·) in sonochemical reactions are discussed based on results generated from numerical simulations. In the last section, ultrasonic cleaning, especially for the application to silicon wafers, is discussed.


Negative pressure Bolt-clamped Langevin-type transducer Resonance Acoustic impedance Damped standing wave Cavitation oscillation Acoustic Lichtenberg figure Plasma formation Reactions of OH radicals Megasonic 


  1. 1.
    Leighton TG (1994) The acoustic bubble. Academic Press, LondonGoogle Scholar
  2. 2.
    Fahy F (2001) Foundations of engineering acoustics. Academic Press, San DiegoGoogle Scholar
  3. 3.
    Pierce AD (1989) Acoustics, an introduction to its physical principles and applications. Acoustical Society of America, New YorkGoogle Scholar
  4. 4.
    Maris H, Balibar S (2000) Negative pressures and cavitation in liquid helium. Phys Today 53(2):29–34. doi: 10.10631/1.882962 CrossRefGoogle Scholar
  5. 5.
    Yasui K, Tuziuti T, Sivakumar M, Iida Y (2004) Sonoluminescence. Appl Spectrosc Rev 39:399–436. doi: 10.1081/ASR-200030202 CrossRefGoogle Scholar
  6. 6.
    Yasui K (2015) Dynamics of acoustic bubbles. In: Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) Sonochemistry and the acoustic bubble. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Galloway WJ (1954) An experimental study of acoustically induced cavitation in liquids. J Acoust Soc Am 26:849–857. doi: 10.1121/1.1907428 CrossRefGoogle Scholar
  8. 8.
    Yasui K (2002) Influence of ultrasonic frequency on multibubble sonoluminescence. J Acoust Soc Am 112:1405–1413. doi: 10.1121/1.1502898 CrossRefGoogle Scholar
  9. 9.
    Apfel RE, Holland CK (1991) Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound in Med & Biol 17:179–185. doi: 10.1016/0301-5629(91)90125-G CrossRefGoogle Scholar
  10. 10.
    Kinsler LE, Frey AR, Coppens AB, Sanders JV (1982) Fundamentals of acoustics, 3rd edn. Wiley, New YorkGoogle Scholar
  11. 11.
    Kremkau FW (2006) Diagnostic ultrasound: principles and instruments, 7th edn. Saunders Elsevier, St. Louis, MissouriGoogle Scholar
  12. 12.
    Ter Haar G (2011) Ultrasonic imaging: safety considerations. Interface Focus 1:686–697. doi: 10.1098/rsfs.2011.0029 CrossRefGoogle Scholar
  13. 13.
    Wu J, Nyborg W (eds) (2006) Emerging therapeutic ultrasound. World Scientific, New JerseyGoogle Scholar
  14. 14.
    Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New YorkGoogle Scholar
  15. 15.
    Asakura Y (2015) Experimental methods in sonochemistry. In: Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) Sonochemistry and the acoustic bubble. Elsevier, AmsterdamGoogle Scholar
  16. 16.
    Yasui K, Tuziuti T, Iida Y (2005) Dependence of the characteristics of bubbles on types of sonochemical reactors. Ultrason Sonochem 12:43–51. doi: 10.1016/j.ultaonch.2004.06.003 CrossRefGoogle Scholar
  17. 17.
    Hacias KJ, Cormier GJ, Nourie SM, Kubel EJ Jr (1997) Guide to acid, alkaline, emulsion, and ultrasonic cleaning. ASM International, Materials Park, OH, USAGoogle Scholar
  18. 18.
    Tuziuti T, Yasui K, Sivakumar M, Iida Y, Miyoshi N (2005) Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J Phys Chem 109:4869–4872. doi: 10.1021/jp0503516 CrossRefGoogle Scholar
  19. 19.
    Yasui K (2011) Fundamentals of acoustic cavitation and sonochemistry. In: Pankaj Ashokkumar M (ed) Theoretical and experimental sonochemistry involving inorganic systems. Springer, DordrechtGoogle Scholar
  20. 20.
    Yasui K, Izu N (2017) Effect of evaporation and condensation on a thermoacoustic engine: a Lagrangian simulation approach. J Acoust Soc Am 141:4398–4407. doi: 10.1121/1.4985385 CrossRefGoogle Scholar
  21. 21.
    Beyer RT (1997) Nonlinear acoustics. Acoustical Society of America, New YorkGoogle Scholar
  22. 22.
    Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A (2008) Strongly interacting bubbles under an ultrasonic horn. Phys Rev E 77:016609. doi: 10.1103/PhysRevE.77.016609 CrossRefGoogle Scholar
  23. 23.
    Yasui K (2016) Unsolved problems in acoustic cavitation. In: Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (eds) Handbook of ultrasonics and sonochemistry. Springer, SingaporeGoogle Scholar
  24. 24.
    Brenner MP, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74:425–484. doi: 10.1103/RevModPhys.74.425 CrossRefGoogle Scholar
  25. 25.
    Degrois M (1966) Cavitation oscillation. Ultrasonics 4:38–39. doi: 10.1016/0041-624X(66)90012-6 CrossRefGoogle Scholar
  26. 26.
    Hiramatsu S, Watanabe Y (1999) On the mechanism of relaxation oscillation in sonoluminescence. Electro Commun Jpn Part 3 82(2):58–65. doi: 10.1002/(SICI)1520-6440(199902)82:2<58::AID-ECJC7>3.0.CO;2-#
  27. 27.
    Weninger KR, Camara CG, Putterman SJ (2001) Observation of bubble dynamics within luminescent cavitation clouds: sonoluminescence at the nano-scale. Phys Rev E 63:016310. doi: 10.1103/PhysRevE.63.016310 CrossRefGoogle Scholar
  28. 28.
    Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2008) The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys 128:184705. doi: 10.1063/1.2919119 CrossRefGoogle Scholar
  29. 29.
    Matula TJ, Cordry SM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527. doi: 10.1121/1.420065 CrossRefGoogle Scholar
  30. 30.
    Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitatsverlag Goettingen, GoettingenGoogle Scholar
  31. 31.
    Mettin R, Cairos C (2016) Bubble dynamics and observations. In: Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (eds) Handbook of ultrasonics and sonochemistry. Springer, SingaporeGoogle Scholar
  32. 32.
    Hatanaka S, Yasui K, Tuziuti T, Kozuka T, Mitome H (2001) Quenching mechanism of multibubble sonoluminescence at excessive sound pressure. Jpn J Appl Phys 40:3856–3860. doi: 10.1143/JJAP.40.3856 CrossRefGoogle Scholar
  33. 33.
    Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, IndiaGoogle Scholar
  34. 34.
    Hatanaka S, Yasui K, Kozuka T, Tuziuti T, Mitome H (2002) Influence of bubble clustering on multibubble sonoluminescence. Ultrasonics 40:655–660. doi: 10.1016/S0041-624X(02)00193-2 CrossRefGoogle Scholar
  35. 35.
    Young JB, Nelson JA, Kang W (2001) Line emission in single-bubble sonoluminescence. Phys Rev Lett 86:2673–2676. doi: 10.1103/PhysRevLett.86.2673 CrossRefGoogle Scholar
  36. 36.
    Hilgenfeldt S, Grossmann S, Lohse D (1999) A simple explanation of light emission in sonoluminescence. Nature (London) 398:402–405CrossRefGoogle Scholar
  37. 37.
    Hilgenfeldt S, Grossmann S, Lohse D (1999) Sonoluminescence light emission. Phys Fluids 11:1318–1330. doi: 10.1063/1.869997 CrossRefGoogle Scholar
  38. 38.
    Yasui K (1999) Mechanism of single-bubble sonoluminescence. Phys Rev E 60:1754–1758. doi: 10.1103/PhysRevE.60.1754 CrossRefGoogle Scholar
  39. 39.
    Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New YorkGoogle Scholar
  40. 40.
    Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683. doi: 10.1146/annurev.physchem.59.032607.093739 CrossRefGoogle Scholar
  41. 41.
    Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95:044301. doi: 10.1103/PhysRevLett.95.044301 CrossRefGoogle Scholar
  42. 42.
    An Y, Li C (2009) Diagnosing temperature change inside sonoluminescing bubbles by calculating line spectra. Phys Rev E 80:046320. doi: 10.1103/PhysRevE.80.046320 CrossRefGoogle Scholar
  43. 43.
    Eddingsaas NC, Suslick KS (2007) Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. J Am Chem Soc 129:3838–3839. doi: 10.1021/ja070192z CrossRefGoogle Scholar
  44. 44.
    Yasui K (2001) Temperature in multibubble sonoluminescence. J Chem Phys 115:2893–2896. doi: 10.1063/1.1395056 CrossRefGoogle Scholar
  45. 45.
    Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602–2605. doi: 10.1103/PhysRevLett.75.2602 CrossRefGoogle Scholar
  46. 46.
    Flannigan DJ, Suslick KS (2007) Emission from electronically excited metal atoms during single-bubble sonoluminescence. Phys Rev Lett 99:134301. doi: 10.1103/PhysRevLett.99.134301 CrossRefGoogle Scholar
  47. 47.
    Choi PK (2011) Sonoluminescence of inorganic ions in aqueous solutions. In: Pankaj, Ashokkumar M (eds) Theoretical and experimental sonochemistry involving inorganic systems. Springer, DordrechtGoogle Scholar
  48. 48.
    Nakajima R, Hayashi Y, Choi PK (2015) Mechanism of two types of Na emission observed in sonoluminescence. Jpn J Appl Phys 54: 07HE02. doi: 10.7567/JJAP.54.07HE02
  49. 49.
    Hatanaka S, Yasui K, Tuziuti T, Mitome H (2000) Difference in threshold between sono- and sonochemical luminescence. Jpn J Appl Phys 39:2962–2966. doi: 10.1143/JJAP.39.2962 CrossRefGoogle Scholar
  50. 50.
    McMurray HN, Wilson BP (1999) Mechanism and spatial study of ultrasonically induced luminol chemiluminescence. J Phys Chem A 103:3955–3962. doi: 10.1021/jp984503r CrossRefGoogle Scholar
  51. 51.
    Matsuoka M, Jin J (2015) Sonochemiluminescence from lucigenin in an aqueous solution using alcohols as coreactant. Chem Lett 44:1759–1761. doi: 10.1246/cl.150838 CrossRefGoogle Scholar
  52. 52.
    Matsuoka M, Takahashi F, Asakura Y, Jin J (2016) Sonochemiluminescence of lucigenin: evidence of superoxide radical anion formation by ultrasonic irradiation. Jpn J Appl Phys 55: 07KB01. doi: 10.7567/JJAP.55.07KB01
  53. 53.
    Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) (2015) Sonochemistry and the acoustic bubble. Elsevier, AmsterdamGoogle Scholar
  54. 54.
    Lide DR (ed) (1994) CRC handbook of chemistry and physics, 75th edn. CRC Press, Boca RatonGoogle Scholar
  55. 55.
    Henglein A (1993) Contributions to various aspects of cavitation chemistry. In: Mason TJ (ed) Advances in sonochemsitry, vol 3. JAI Press, LondonGoogle Scholar
  56. 56.
    Elliot AJ, McCracken DR, Buxton GV, Wood ND (1990) Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. J Chem Soc, Faraday Trans 86:1539–1547. doi: 10.1039/ft9908601539 CrossRefGoogle Scholar
  57. 57.
    Mugnai A, Petroncelli P, Fiocco G (1979) Sensitivity of the photodissociation of NO2, NO3, HNO3 and H2O2 to the solar radiation diffused by the ground and by atmospheric particles. J Atmosph Terrest Phys 41:351–359. doi: 10.1016/0021-9169(79)90031-X CrossRefGoogle Scholar
  58. 58.
    Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions. evidence for OH and H by spin trapping. J Am Chem Soc 104:3537–3539. doi: 10.1021/ja00376a064 CrossRefGoogle Scholar
  59. 59.
    Finkelstein E, Rosen GM, Rauckman EJ (1980) Spin trapping of superoxide and hydroxyl radical: practical aspects. Archives Biochem Biophys 200:1–16. doi: 10.1016/0003-9861(80)90323-9 CrossRefGoogle Scholar
  60. 60.
    Riesz P, Berdahl D, Christman CL (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect 64:233–252. doi: 10.2307/3430013 CrossRefGoogle Scholar
  61. 61.
    Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87:1369–1377. doi: 10.1021/j100231a020 CrossRefGoogle Scholar
  62. 62.
    Fang X, Mark G, von Sonntag C (1996) OH radicals formation by ultrasound in aqueous solutions part I: the chemistry underlying the terephthalate dosimeter. Ultrason Sonochem 3:57–63. doi: 10.1016/1350-4177(95)00032-1 CrossRefGoogle Scholar
  63. 63.
    Mark G, Tauber A, Laupert R, Schuchmann HP, Schulz D, Mues A, von Sonntag C (1998) OH-radical formation by ultrasound in aqueous solution—part II: terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem 5:41–52. doi: 10.1016/S1350-4177(98)00012-1 CrossRefGoogle Scholar
  64. 64.
    Iida Y, Yasui K, Tuziuti T, Sivakumar M (2005) Sonochemistry and its dosimetry. Microchem J 80:159–164. doi: 10.1016/j.microc.2004.07.016 CrossRefGoogle Scholar
  65. 65.
    Koda S, Kimura T, Kondo T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10:149–156. doi: 10.1016/S1350-4177(03)00084-1 CrossRefGoogle Scholar
  66. 66.
    Yasui K, Tuziuti T, Sivakumar M, Iida Y (2005) Theoretical study of single-bubble sonoluminescence. J Chem Phys 122:224706. doi: 10.1063/1.1925607 CrossRefGoogle Scholar
  67. 67.
    Iida Y, Tuziuti T, Yasui K, Towata A, Kozuka T (2008) Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innov Food Sci Emerg Technol 9:140–146. doi: 10.1016/j.ifset.2007.03.029 CrossRefGoogle Scholar
  68. 68.
    Price GJ (1990) The use of ultrasound for the controlled degradation of polymer solutions. In: Mason TJ (ed) Advances in sonochemistry, vol 1. JAO Press, Greenwich, ConnecticutGoogle Scholar
  69. 69.
    Zhang Z, Sun DW, Zhu Z, Cheng L (2015) Enhancement of crystallization processes by power ultrasound: current state-of-the-art and research advances. Comprehensive Rev Food Sci Food Safety 14:303–316. doi: 10.1111/1541-4337.12132 CrossRefGoogle Scholar
  70. 70.
    Castillo-Peinado LS, Dolores M, Castro L (2016) The role of ultrasound in pharmaceutical production: sonocrystallization. J Pharm Pharmacol 68:1249–1267. doi: 10.1111/jphp.12614 CrossRefGoogle Scholar
  71. 71.
    Yasui K, Kato K (2017) Numerical simulations of sonochemical production and oriented aggregation of BaTiO3 nanocrystals. Ultrason Sonochem 35:673–680. doi: 10.1016/j.ultsonch.2016.05.009 CrossRefGoogle Scholar
  72. 72.
    Dang F, Kato K, Imai H, Wada S, Haneda H, Kuwabara M (2010) A new effect of ultrasonication on the formation of BaTiO3 nanoparticles. Ultrason Sonochem 17:310–314. doi: 10.1016/j.ultsonch.2009.08.006 CrossRefGoogle Scholar
  73. 73.
    Yasui K, Kato K (2014) Numerical simulations of nucleation and aggregation of BaTiO3 nanocrystals under ultrasound. In: Manickam S, Ashokkumar M (eds) Cavitaion a novel energy-efficient technique for the generation of nanomaterials. Pan Stanford, SingaporeGoogle Scholar
  74. 74.
    Ohmi T (1996) Total room temperature wet cleaning for Si substrate surface. J Electrochem Soc 143:2957–2964. doi: 10.1149/1.1837133 CrossRefGoogle Scholar
  75. 75.
    Bakhtari K, Guldiken RO, Busnaina AA, Park JG (2006) Experimental and analytical study of submicrometer particle removal from deep trenches. J Electrochem Soc 153:C603–C607. doi: 10.1149/1.2214531 CrossRefGoogle Scholar
  76. 76.
    Potter G, Tokranova N, Rastegar A, Castracane J (2016) Design, fabrication, and testing of surface acoustic wave devices for semiconductor cleaning applications. Microelectro Eng 162:100–104. doi: 10.1016/j.mee.2016.04.006 CrossRefGoogle Scholar
  77. 77.
    Tuziuti T (2016) Influence of sonication conditions on the efficiency of ultrasonic cleaning with flowing micrometer-sized air bubbles. Ultrason Sonochem 29:604–611. doi: 10.1016/j.ultsonch.2015.09.011 CrossRefGoogle Scholar
  78. 78.
    Iizuka A, Iwata W, Shimata E, Nakamura T (2016) Physical washing method for press oil removal from side surfaces using microbubbles under ultrasonic irradiation. Ind Eng Chem Res 55:10782–10787. doi: 10.1021/acs.iecr.6b01887 CrossRefGoogle Scholar
  79. 79.
    Yasui K, Lee J, Tuziuti T, Towata A, Kozuka T, Iida Y (2009) Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. J Acoust Soc Am 126:973–982. doi: 10.1121/1.3179677 CrossRefGoogle Scholar
  80. 80.
    Yasui K, Towata A, Tuziuti T, Kozuka T, Kato K (2011) Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. J Acoust Soc Am 130:3233–3242. doi: 10.1121/1.3626130 CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)Moriyama-ku, NagoyaJapan

Personalised recommendations