Skip to main content

Acoustic Cavitation

  • Chapter
  • First Online:
Acoustic Cavitation and Bubble Dynamics

Part of the book series: SpringerBriefs in Molecular Science ((ULSONO))

Abstract

Acoustic cavitation is the formation and subsequent violent collapse of bubbles in liquid irradiated with intense ultrasound. Ultrasound is radiated by a vibrating plate connected to ultrasonic transducers made of piezoelectric materials driven by electrical power. Microscopic mechanism for vibration of piezoelectric materials is briefly described. There are two types of ultrasonic experimental equipment used to generate acoustic cavitation: ultrasonic horn (or probe) and ultrasonic bath. Ultrasonic standing waves and traveling waves are discussed by means of mathematical equations. Acoustic impedance is discussed, and transmission and reflection coefficients are described. Various types of acoustic cavitations are discussed: transient and stable cavitations, vaporous and gaseous cavitations. Fluctuations in degassing and re-gassing cause repeated change between vaporous and gaseous cavitation. Light emission associated with violent bubble collapse as well as chemical reactions inside and outside a bubble is discussed in the sections entitled “sonoluminescence” and “sonochemistry,” respectively. Unsolved problems in sonoluminescence are briefly discussed. Reasons for lesser amount of produced H radicals (H·) than that of OH radicals (OH·) in sonochemical reactions are discussed based on results generated from numerical simulations. In the last section, ultrasonic cleaning, especially for the application to silicon wafers, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leighton TG (1994) The acoustic bubble. Academic Press, London

    Google Scholar 

  2. Fahy F (2001) Foundations of engineering acoustics. Academic Press, San Diego

    Google Scholar 

  3. Pierce AD (1989) Acoustics, an introduction to its physical principles and applications. Acoustical Society of America, New York

    Google Scholar 

  4. Maris H, Balibar S (2000) Negative pressures and cavitation in liquid helium. Phys Today 53(2):29–34. doi:10.10631/1.882962

    Article  CAS  Google Scholar 

  5. Yasui K, Tuziuti T, Sivakumar M, Iida Y (2004) Sonoluminescence. Appl Spectrosc Rev 39:399–436. doi:10.1081/ASR-200030202

    Article  CAS  Google Scholar 

  6. Yasui K (2015) Dynamics of acoustic bubbles. In: Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam

    Google Scholar 

  7. Galloway WJ (1954) An experimental study of acoustically induced cavitation in liquids. J Acoust Soc Am 26:849–857. doi:10.1121/1.1907428

    Article  Google Scholar 

  8. Yasui K (2002) Influence of ultrasonic frequency on multibubble sonoluminescence. J Acoust Soc Am 112:1405–1413. doi:10.1121/1.1502898

    Article  CAS  Google Scholar 

  9. Apfel RE, Holland CK (1991) Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound in Med & Biol 17:179–185. doi:10.1016/0301-5629(91)90125-G

    Article  CAS  Google Scholar 

  10. Kinsler LE, Frey AR, Coppens AB, Sanders JV (1982) Fundamentals of acoustics, 3rd edn. Wiley, New York

    Google Scholar 

  11. Kremkau FW (2006) Diagnostic ultrasound: principles and instruments, 7th edn. Saunders Elsevier, St. Louis, Missouri

    Google Scholar 

  12. Ter Haar G (2011) Ultrasonic imaging: safety considerations. Interface Focus 1:686–697. doi:10.1098/rsfs.2011.0029

    Article  Google Scholar 

  13. Wu J, Nyborg W (eds) (2006) Emerging therapeutic ultrasound. World Scientific, New Jersey

    Google Scholar 

  14. Kittel C (2005) Introduction to solid state physics, 8th edn. Wiley, New York

    Google Scholar 

  15. Asakura Y (2015) Experimental methods in sonochemistry. In: Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam

    Google Scholar 

  16. Yasui K, Tuziuti T, Iida Y (2005) Dependence of the characteristics of bubbles on types of sonochemical reactors. Ultrason Sonochem 12:43–51. doi:10.1016/j.ultaonch.2004.06.003

    Article  CAS  Google Scholar 

  17. Hacias KJ, Cormier GJ, Nourie SM, Kubel EJ Jr (1997) Guide to acid, alkaline, emulsion, and ultrasonic cleaning. ASM International, Materials Park, OH, USA

    Google Scholar 

  18. Tuziuti T, Yasui K, Sivakumar M, Iida Y, Miyoshi N (2005) Correlation between acoustic cavitation noise and yield enhancement of sonochemical reaction by particle addition. J Phys Chem 109:4869–4872. doi:10.1021/jp0503516

    Article  CAS  Google Scholar 

  19. Yasui K (2011) Fundamentals of acoustic cavitation and sonochemistry. In: Pankaj Ashokkumar M (ed) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht

    Google Scholar 

  20. Yasui K, Izu N (2017) Effect of evaporation and condensation on a thermoacoustic engine: a Lagrangian simulation approach. J Acoust Soc Am 141:4398–4407. doi:10.1121/1.4985385

    Article  Google Scholar 

  21. Beyer RT (1997) Nonlinear acoustics. Acoustical Society of America, New York

    Google Scholar 

  22. Yasui K, Iida Y, Tuziuti T, Kozuka T, Towata A (2008) Strongly interacting bubbles under an ultrasonic horn. Phys Rev E 77:016609. doi:10.1103/PhysRevE.77.016609

    Article  Google Scholar 

  23. Yasui K (2016) Unsolved problems in acoustic cavitation. In: Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (eds) Handbook of ultrasonics and sonochemistry. Springer, Singapore

    Google Scholar 

  24. Brenner MP, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74:425–484. doi:10.1103/RevModPhys.74.425

    Article  CAS  Google Scholar 

  25. Degrois M (1966) Cavitation oscillation. Ultrasonics 4:38–39. doi:10.1016/0041-624X(66)90012-6

    Article  Google Scholar 

  26. Hiramatsu S, Watanabe Y (1999) On the mechanism of relaxation oscillation in sonoluminescence. Electro Commun Jpn Part 3 82(2):58–65. doi:10.1002/(SICI)1520-6440(199902)82:2<58::AID-ECJC7>3.0.CO;2-#

  27. Weninger KR, Camara CG, Putterman SJ (2001) Observation of bubble dynamics within luminescent cavitation clouds: sonoluminescence at the nano-scale. Phys Rev E 63:016310. doi:10.1103/PhysRevE.63.016310

    Article  CAS  Google Scholar 

  28. Yasui K, Tuziuti T, Lee J, Kozuka T, Towata A, Iida Y (2008) The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. J Chem Phys 128:184705. doi:10.1063/1.2919119

    Article  Google Scholar 

  29. Matula TJ, Cordry SM, Roy RA, Crum LA (1997) Bjerknes force and bubble levitation under single-bubble sonoluminescence conditions. J Acoust Soc Am 102:1522–1527. doi:10.1121/1.420065

    Article  Google Scholar 

  30. Mettin R (2007) From a single bubble to bubble structures in acoustic cavitation. In: Kurz T, Parlitz U, Kaatze U (eds) Oscillations, waves and interactions. Universitatsverlag Goettingen, Goettingen

    Google Scholar 

  31. Mettin R, Cairos C (2016) Bubble dynamics and observations. In: Ashokkumar M, Cavalieri F, Chemat F, Okitsu K, Sambandam A, Yasui K, Zisu B (eds) Handbook of ultrasonics and sonochemistry. Springer, Singapore

    Google Scholar 

  32. Hatanaka S, Yasui K, Tuziuti T, Kozuka T, Mitome H (2001) Quenching mechanism of multibubble sonoluminescence at excessive sound pressure. Jpn J Appl Phys 40:3856–3860. doi:10.1143/JJAP.40.3856

    Article  CAS  Google Scholar 

  33. Mettin R (2005) Bubble structures in acoustic cavitation. In: Doinikov AA (ed) Bubble and particle dynamics in acoustic fields: modern trends and applications. Research Signpost, Kerala, India

    Google Scholar 

  34. Hatanaka S, Yasui K, Kozuka T, Tuziuti T, Mitome H (2002) Influence of bubble clustering on multibubble sonoluminescence. Ultrasonics 40:655–660. doi:10.1016/S0041-624X(02)00193-2

    Article  CAS  Google Scholar 

  35. Young JB, Nelson JA, Kang W (2001) Line emission in single-bubble sonoluminescence. Phys Rev Lett 86:2673–2676. doi:10.1103/PhysRevLett.86.2673

    Article  CAS  Google Scholar 

  36. Hilgenfeldt S, Grossmann S, Lohse D (1999) A simple explanation of light emission in sonoluminescence. Nature (London) 398:402–405

    Article  CAS  Google Scholar 

  37. Hilgenfeldt S, Grossmann S, Lohse D (1999) Sonoluminescence light emission. Phys Fluids 11:1318–1330. doi:10.1063/1.869997

    Article  CAS  Google Scholar 

  38. Yasui K (1999) Mechanism of single-bubble sonoluminescence. Phys Rev E 60:1754–1758. doi:10.1103/PhysRevE.60.1754

    Article  CAS  Google Scholar 

  39. Jackson JD (1975) Classical electrodynamics, 2nd edn. Wiley, New York

    Google Scholar 

  40. Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683. doi:10.1146/annurev.physchem.59.032607.093739

    Article  CAS  Google Scholar 

  41. Flannigan DJ, Suslick KS (2005) Plasma line emission during single-bubble cavitation. Phys Rev Lett 95:044301. doi:10.1103/PhysRevLett.95.044301

    Article  Google Scholar 

  42. An Y, Li C (2009) Diagnosing temperature change inside sonoluminescing bubbles by calculating line spectra. Phys Rev E 80:046320. doi:10.1103/PhysRevE.80.046320

    Article  Google Scholar 

  43. Eddingsaas NC, Suslick KS (2007) Evidence for a plasma core during multibubble sonoluminescence in sulfuric acid. J Am Chem Soc 129:3838–3839. doi:10.1021/ja070192z

    Article  CAS  Google Scholar 

  44. Yasui K (2001) Temperature in multibubble sonoluminescence. J Chem Phys 115:2893–2896. doi:10.1063/1.1395056

    Article  CAS  Google Scholar 

  45. Matula TJ, Roy RA, Mourad PD, McNamara WB III, Suslick KS (1995) Comparison of multibubble and single-bubble sonoluminescence spectra. Phys Rev Lett 75:2602–2605. doi:10.1103/PhysRevLett.75.2602

    Article  CAS  Google Scholar 

  46. Flannigan DJ, Suslick KS (2007) Emission from electronically excited metal atoms during single-bubble sonoluminescence. Phys Rev Lett 99:134301. doi:10.1103/PhysRevLett.99.134301

    Article  Google Scholar 

  47. Choi PK (2011) Sonoluminescence of inorganic ions in aqueous solutions. In: Pankaj, Ashokkumar M (eds) Theoretical and experimental sonochemistry involving inorganic systems. Springer, Dordrecht

    Google Scholar 

  48. Nakajima R, Hayashi Y, Choi PK (2015) Mechanism of two types of Na emission observed in sonoluminescence. Jpn J Appl Phys 54: 07HE02. doi:10.7567/JJAP.54.07HE02

  49. Hatanaka S, Yasui K, Tuziuti T, Mitome H (2000) Difference in threshold between sono- and sonochemical luminescence. Jpn J Appl Phys 39:2962–2966. doi:10.1143/JJAP.39.2962

    Article  CAS  Google Scholar 

  50. McMurray HN, Wilson BP (1999) Mechanism and spatial study of ultrasonically induced luminol chemiluminescence. J Phys Chem A 103:3955–3962. doi:10.1021/jp984503r

    Article  CAS  Google Scholar 

  51. Matsuoka M, Jin J (2015) Sonochemiluminescence from lucigenin in an aqueous solution using alcohols as coreactant. Chem Lett 44:1759–1761. doi:10.1246/cl.150838

    Article  CAS  Google Scholar 

  52. Matsuoka M, Takahashi F, Asakura Y, Jin J (2016) Sonochemiluminescence of lucigenin: evidence of superoxide radical anion formation by ultrasonic irradiation. Jpn J Appl Phys 55: 07KB01. doi:10.7567/JJAP.55.07KB01

  53. Grieser F, Choi PK, Enomoto N, Harada H, Okitsu K, Yasui K (eds) (2015) Sonochemistry and the acoustic bubble. Elsevier, Amsterdam

    Google Scholar 

  54. Lide DR (ed) (1994) CRC handbook of chemistry and physics, 75th edn. CRC Press, Boca Raton

    Google Scholar 

  55. Henglein A (1993) Contributions to various aspects of cavitation chemistry. In: Mason TJ (ed) Advances in sonochemsitry, vol 3. JAI Press, London

    Google Scholar 

  56. Elliot AJ, McCracken DR, Buxton GV, Wood ND (1990) Estimation of rate constants for near-diffusion-controlled reactions in water at high temperatures. J Chem Soc, Faraday Trans 86:1539–1547. doi:10.1039/ft9908601539

    Article  CAS  Google Scholar 

  57. Mugnai A, Petroncelli P, Fiocco G (1979) Sensitivity of the photodissociation of NO2, NO3, HNO3 and H2O2 to the solar radiation diffused by the ground and by atmospheric particles. J Atmosph Terrest Phys 41:351–359. doi:10.1016/0021-9169(79)90031-X

    Article  CAS  Google Scholar 

  58. Makino K, Mossoba MM, Riesz P (1982) Chemical effects of ultrasound on aqueous solutions. evidence for OH and H by spin trapping. J Am Chem Soc 104:3537–3539. doi:10.1021/ja00376a064

    Article  CAS  Google Scholar 

  59. Finkelstein E, Rosen GM, Rauckman EJ (1980) Spin trapping of superoxide and hydroxyl radical: practical aspects. Archives Biochem Biophys 200:1–16. doi:10.1016/0003-9861(80)90323-9

    Article  CAS  Google Scholar 

  60. Riesz P, Berdahl D, Christman CL (1985) Free radical generation by ultrasound in aqueous and nonaqueous solutions. Environ Health Perspect 64:233–252. doi:10.2307/3430013

    Article  CAS  Google Scholar 

  61. Makino K, Mossoba MM, Riesz P (1983) Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. J Phys Chem 87:1369–1377. doi:10.1021/j100231a020

    Article  CAS  Google Scholar 

  62. Fang X, Mark G, von Sonntag C (1996) OH radicals formation by ultrasound in aqueous solutions part I: the chemistry underlying the terephthalate dosimeter. Ultrason Sonochem 3:57–63. doi:10.1016/1350-4177(95)00032-1

    Article  CAS  Google Scholar 

  63. Mark G, Tauber A, Laupert R, Schuchmann HP, Schulz D, Mues A, von Sonntag C (1998) OH-radical formation by ultrasound in aqueous solution—part II: terephthalate and Fricke dosimetry and the influence of various conditions on the sonolytic yield. Ultrason Sonochem 5:41–52. doi:10.1016/S1350-4177(98)00012-1

    Article  CAS  Google Scholar 

  64. Iida Y, Yasui K, Tuziuti T, Sivakumar M (2005) Sonochemistry and its dosimetry. Microchem J 80:159–164. doi:10.1016/j.microc.2004.07.016

    Article  CAS  Google Scholar 

  65. Koda S, Kimura T, Kondo T, Mitome H (2003) A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrason Sonochem 10:149–156. doi:10.1016/S1350-4177(03)00084-1

    Article  CAS  Google Scholar 

  66. Yasui K, Tuziuti T, Sivakumar M, Iida Y (2005) Theoretical study of single-bubble sonoluminescence. J Chem Phys 122:224706. doi:10.1063/1.1925607

    Article  Google Scholar 

  67. Iida Y, Tuziuti T, Yasui K, Towata A, Kozuka T (2008) Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innov Food Sci Emerg Technol 9:140–146. doi:10.1016/j.ifset.2007.03.029

    Article  CAS  Google Scholar 

  68. Price GJ (1990) The use of ultrasound for the controlled degradation of polymer solutions. In: Mason TJ (ed) Advances in sonochemistry, vol 1. JAO Press, Greenwich, Connecticut

    Google Scholar 

  69. Zhang Z, Sun DW, Zhu Z, Cheng L (2015) Enhancement of crystallization processes by power ultrasound: current state-of-the-art and research advances. Comprehensive Rev Food Sci Food Safety 14:303–316. doi:10.1111/1541-4337.12132

    Article  CAS  Google Scholar 

  70. Castillo-Peinado LS, Dolores M, Castro L (2016) The role of ultrasound in pharmaceutical production: sonocrystallization. J Pharm Pharmacol 68:1249–1267. doi:10.1111/jphp.12614

    Article  CAS  Google Scholar 

  71. Yasui K, Kato K (2017) Numerical simulations of sonochemical production and oriented aggregation of BaTiO3 nanocrystals. Ultrason Sonochem 35:673–680. doi:10.1016/j.ultsonch.2016.05.009

    Article  CAS  Google Scholar 

  72. Dang F, Kato K, Imai H, Wada S, Haneda H, Kuwabara M (2010) A new effect of ultrasonication on the formation of BaTiO3 nanoparticles. Ultrason Sonochem 17:310–314. doi:10.1016/j.ultsonch.2009.08.006

    Article  CAS  Google Scholar 

  73. Yasui K, Kato K (2014) Numerical simulations of nucleation and aggregation of BaTiO3 nanocrystals under ultrasound. In: Manickam S, Ashokkumar M (eds) Cavitaion a novel energy-efficient technique for the generation of nanomaterials. Pan Stanford, Singapore

    Google Scholar 

  74. Ohmi T (1996) Total room temperature wet cleaning for Si substrate surface. J Electrochem Soc 143:2957–2964. doi:10.1149/1.1837133

    Article  CAS  Google Scholar 

  75. Bakhtari K, Guldiken RO, Busnaina AA, Park JG (2006) Experimental and analytical study of submicrometer particle removal from deep trenches. J Electrochem Soc 153:C603–C607. doi:10.1149/1.2214531

    Article  CAS  Google Scholar 

  76. Potter G, Tokranova N, Rastegar A, Castracane J (2016) Design, fabrication, and testing of surface acoustic wave devices for semiconductor cleaning applications. Microelectro Eng 162:100–104. doi:10.1016/j.mee.2016.04.006

    Article  CAS  Google Scholar 

  77. Tuziuti T (2016) Influence of sonication conditions on the efficiency of ultrasonic cleaning with flowing micrometer-sized air bubbles. Ultrason Sonochem 29:604–611. doi:10.1016/j.ultsonch.2015.09.011

    Article  CAS  Google Scholar 

  78. Iizuka A, Iwata W, Shimata E, Nakamura T (2016) Physical washing method for press oil removal from side surfaces using microbubbles under ultrasonic irradiation. Ind Eng Chem Res 55:10782–10787. doi:10.1021/acs.iecr.6b01887

    Article  CAS  Google Scholar 

  79. Yasui K, Lee J, Tuziuti T, Towata A, Kozuka T, Iida Y (2009) Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. J Acoust Soc Am 126:973–982. doi:10.1121/1.3179677

    Article  Google Scholar 

  80. Yasui K, Towata A, Tuziuti T, Kozuka T, Kato K (2011) Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound. J Acoust Soc Am 130:3233–3242. doi:10.1121/1.3626130

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyuichi Yasui .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Yasui, K. (2018). Acoustic Cavitation. In: Acoustic Cavitation and Bubble Dynamics. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-68237-2_1

Download citation

Publish with us

Policies and ethics