Ecology and Evolution of Species-Rich Interaction Networks

  • Rafael Luís Galdini Raimundo
  • Flavia Maria Darcie Marquitti
  • Cecilia Siliansky de Andreazzi
  • Mathias Mistretta Pires
  • Paulo Roberto GuimarãesJr
Chapter

Abstract

The perception that the complexity of tropical ecological interactions is both a product of evolutionary processes and a feedstock for evolution lies at the origin of Evolutionary Ecology. We now have the opportunity to revisit this foundational perception to gain insight into the processes shaping biodiversity structure and ecosystem functioning. Such an opportunity arises from the ongoing theoretical integration between ecological and evolutionary theories, alongside with the application of the network approach to characterize the structure and dynamics of multi-species communities. In this chapter, we focus on the fundamental aspects of ecological, evolutionary, and eco-evolutionary theories underlying the network approach to the study of multi-species systems, such as megadiverse tropical communities. Together, these perspectives illustrate the challenges we shall face in the decades to come in order to take advantage of ongoing theoretical integration, the gradual accumulation of data on tropical interactions, and the availability of robust analytical and computational tools to enlighten the processes shaping biodiversity.

Notes

Acknowledgements

The São Paulo State Research Foundation (FAPESP) supported RLGR (grant #2014/21106-4), MMP (grant #2013/22016-6), FMDM (grants 2015/11985-3 and #2016/00635-4), and PRGJr (grant #2009/54422-8). RLGR was also supported by CAPES/Brazilian Ministry of Education and PRGJr was also supported by CNPq/Brazilian Ministry of Science, Technology, and Innovation.

References

  1. Abrams PA (1996) Evolution and the consequences of species introductions and deletions. Ecology 77:1321–1328CrossRefGoogle Scholar
  2. Abrams PA (2005) ‘Adaptive dynamics’ vs. ‘adaptive dynamics’. J Evol Biol 5:1162–1165CrossRefGoogle Scholar
  3. Abrams PA (2010) Implications of flexible foraging for interspecific interactions: lessons from simple models. Funct Ecol 24:7–17CrossRefGoogle Scholar
  4. Abrams PA, Cortez MH (2015) Is competition needed for ecological character displacement? Does displacement decrease competition? Evolution 69:3039–3053PubMedPubMedCentralCrossRefGoogle Scholar
  5. Agosta SJ, Klemens JA (2008) Ecological fitting by phenotypically flexible genotypes: implications for species associations, community assembly and evolution. Ecol Lett 11:1123–1134PubMedCrossRefGoogle Scholar
  6. Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208PubMedCrossRefGoogle Scholar
  7. Andreazzi CS, Thompson JN, Guimarães PR Jr (2017) Network structure and selection asymmetry drive coevolution in species-rich antagonistic interactions. Am Nat 190(1):99–115PubMedCrossRefGoogle Scholar
  8. Barraclough TG (2015) How do species interactions affect evolutionary dynamics across whole communities? Annu Rev Ecol Evol Syst 46:25–48CrossRefGoogle Scholar
  9. Bascompte J, Jordano P (2014) Mutualistic networks. Princeton University Press, PrincetonGoogle Scholar
  10. Bascompte J, Jordano P, Melián CJ et al (2003) The nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci U S A 100:9383–9387PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bastolla U, Fortuna MA, Pascual-García et al (2009) The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458:1018–1020Google Scholar
  12. Becks L, Ellner P, Jones LE, Hairston NG (2010) Reduction of adaptive genetic diversity radically alters eco-evolutionary community dynamics. Ecol Lett 13:989–997PubMedGoogle Scholar
  13. Bronstein JL (2009) Mutualism and symbiosis. In: Levin S (ed) The Princeton guide to ecology. Princeton University Press, Princeton, pp 233–238Google Scholar
  14. Carroll S, Hendry APP, Reznick DN, Fox C (2007) Evolution on ecological time-scales. Funct Ecol 21:387–393CrossRefGoogle Scholar
  15. Cook JM, Rasplus J-Y (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol 18:241–248CrossRefGoogle Scholar
  16. Darwin CR (1859) On the origin of species by means of natural selection. J. Murray, LondonGoogle Scholar
  17. Darwin C, Wallace AR (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Zool J Linnean Soc 3:46–50Google Scholar
  18. Dáttilo W (2012) Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions. Netw Biol 2:127–138Google Scholar
  19. Dáttilo W, Díaz-Castelazo C, Rico-Gray V (2014a) Ant dominance hierarchy determines the nested pattern in ant-plant networks. Biol J Linn Soc 113:405–414CrossRefGoogle Scholar
  20. Dáttilo W, Sánchez-Gálvan I, Lange D et al (2014b) Importance of interaction frequency in analysis of ant-plant networks in tropical environments. J Trop Ecol 30:165–168CrossRefGoogle Scholar
  21. Dáttilo W, Lara-Rodríguez N, Jordano P et al (2016) Unraveling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proc Biol Sci 283:20161564Google Scholar
  22. Díaz-Castelazo C, Sánchez-Galván IR, Guimarães PR et al (2013) Long-term temporal variation in the organization of an ant–plant network. Ann Bot 111:1285–1293PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34:579–612PubMedCrossRefGoogle Scholar
  24. Dunne JA (2006) The network structure of food webs. In: Pascual M, Dunne JA (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, Oxford, pp 27–86Google Scholar
  25. Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567CrossRefGoogle Scholar
  26. Ellner SP, Geber MA, Hairston NG (2011) Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol Lett 14:603–614PubMedCrossRefGoogle Scholar
  27. Encinas-Viso F, Melian CJ, Etienne RS (2014) The emergence of network structure, complementarity and convergence from basic ecological and genetic processes. bioRxiv. doi:https://doi.org/10.1101/007393
  28. Evans DM, Kitson JJN, Lunt DH et al (2016) Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Funct Ecol 30:1904–1916CrossRefGoogle Scholar
  29. Fonseca CR, Ganade G (1996) Asymmetries, compartments and null interactions in an Amazonian ant-plant community. J Anim Ecol 65:339–347CrossRefGoogle Scholar
  30. Fontaine C, Guimarães PR Jr, Kéfi S et al (2011) The ecological and evolutionary implications of merging different types of networks. Ecol Lett 14:1170–1181PubMedCrossRefGoogle Scholar
  31. Fox JW, Vasseur DA (2008) Character convergence under competition for nutritionally essential resources. Am Nat 172:667–680PubMedCrossRefGoogle Scholar
  32. Franks SJ, Sim S, Weis AE (2007) Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc Natl Acad Sci U S A 104:1278–1282PubMedPubMedCentralCrossRefGoogle Scholar
  33. Fussmann GF, Loreau M, Abrams PA (2007) Eco-evolutionary dynamics of communities and ecosystems. Funct Ecol 21:465–477CrossRefGoogle Scholar
  34. Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090PubMedCrossRefGoogle Scholar
  35. Gause G (1932) Experimental studies on the struggle for existence. J Exp Biol 9:389–402Google Scholar
  36. Gómez JM, Perfectti F, Bosch J et al (2009) A geographic selection mosaic in a generalized plant-pollinator-herbivore system. Ecol Monogr 79:245–263CrossRefGoogle Scholar
  37. Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711PubMedCrossRefGoogle Scholar
  38. Grant PR, Grant BR (2014) 40 years of evolution: Darwin’s finches on Daphne Major Island. Princeton University Press, PrincetonCrossRefGoogle Scholar
  39. Gravel D, Massol F, Leibold MAA (2016) Stability and complexity in model meta-ecosystems. Nat Commun 7:12457PubMedPubMedCentralCrossRefGoogle Scholar
  40. Grilli J, Roger T, Allesina S (2016) Modularity and stability in ecological communities. Nat Commun 7:12031PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gross T, Blasius B (2008) Adaptive coevolutionary networks: a review. J R Soc Interface 5:259–271PubMedCrossRefGoogle Scholar
  42. Guimarães PR Jr, Rico-Gray V, Oliveira PS et al (2007) Interaction intimacy affects structure and coevolutionary dynamics in mutualistic networks. Curr Biol 17:1797–1803PubMedCrossRefGoogle Scholar
  43. Guimarães PR Jr, Pires MM, Marquitti FMD et al (2016) Ecology of mutualisms. eLS. Wiley, HobokenGoogle Scholar
  44. Hairston NG, Ellner SP, Geber MA et al (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127CrossRefGoogle Scholar
  45. Haloin JR, Strauss SY (2008) Interplay between ecological communities and evolution: review of feedbacks from microevolutionary to macroevolutionary scales. Ann N Y Acad Sci 1133:87–125PubMedCrossRefGoogle Scholar
  46. Hansen DM, Galetti M (2009) The forgotten megafauna. Science 324:42–43PubMedCrossRefGoogle Scholar
  47. Hembry D (2012) Coevolutionary diversification of leafflower moths (Lepidoptera: Gracillariidae: Epicephala) and leafflower trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) in southeastern Polynesia. Ph.D. Thesis, University of California, BerkeleyGoogle Scholar
  48. Hendry AP (2016) Eco-evolutionary dynamics. Princeton University Press, PrincetonGoogle Scholar
  49. Hutchinson GE (1965) The ecological theater and the evolutionary play. Yale University Press, New HavenGoogle Scholar
  50. Johnson MTJ, Agrawal AA (2005) Plant genotype and environment interact to shape a diverse arthropod community on evening primrose (Oenothera biennis). Ecology 86:874–885CrossRefGoogle Scholar
  51. Jones EI, Ferrière RG, Bronstein JL (2009) Eco-evolutionary dynamics of mutualists and exploiters. Am Nat 174:780–794PubMedGoogle Scholar
  52. Jones EI, Bronstein JL, Ferrière R (2012) The fundamental role of competition in the ecology and evolution of mutualisms. Ann N Y Acad Sci 1256:66–88PubMedCrossRefGoogle Scholar
  53. Jordano P, Bascompte J, Olesen J (2003) Invariant properties in coevolutionary networks of plant–animal interactions. Ecol Lett 6:69–81CrossRefGoogle Scholar
  54. Kaiser-Bunbury CN, Muff S, Memmott JJ et al (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13:442–452PubMedCrossRefGoogle Scholar
  55. Kaiser-Bunbury CN, Mougal J, Whittington AE et al (2017) Ecosystem restoration strengthens pollination network resilience and function. Nature 542:223–227PubMedCrossRefGoogle Scholar
  56. Kang Y, Wedekin LJ (2013) Dynamics of a intraguild predation model with generalist or specialist predator. J Math Biol 67:1227–1259PubMedCrossRefGoogle Scholar
  57. Kinnison MT, Hairston NG, Hendry AP (2015) Cryptic eco-evolutionary dynamics. Ann N Y Acad Sci 1360:120–144PubMedCrossRefGoogle Scholar
  58. Koch H, Frickel J, Valiadi M, Becks L (2014) Why rapid, adaptive evolution matters for community dynamics. Front Ecol Evol 2:17CrossRefGoogle Scholar
  59. Kolchinsky A, Gates AJ, Rocha LM (2015) Modularity and the spread of perturbations in complex dynamical systems. Phys Rev E 92:060801CrossRefGoogle Scholar
  60. Lande R (1976) Natural selection and random genetic drift in phenotypic evolution. Evolution 30:314–334Google Scholar
  61. Loeuille N (2010) Influence of evolution on the stability of ecological communities. Ecol Lett 13:1536–1545PubMedCrossRefGoogle Scholar
  62. Losos JB, Arnold SJ, Bejerano G et al (2013) Evolutionary biology for the 21st century. PLoS Biol 11:e1001466PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lotka AJ (1920) Analytical note on certain rhythmic relations in organic systems. Proc Natl Acad Sci U S A 6:410–415PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lurgi M, Montoya D, Montoya JM (2016) The effects of space and diversity of interaction types on the stability of complex ecological networks. Theor Ecol 9:3–13CrossRefGoogle Scholar
  65. Lush JL (1943) Animal breeding plans. The Iowa State College Press, AmesGoogle Scholar
  66. May RM (1973) Qualitative stability in model ecosystems. Ecology 54:638–641CrossRefGoogle Scholar
  67. McCann K, Hastings A, Huxel GR (1998) Weak trophic interactions and the balance of nature. Nature 395:794–798Google Scholar
  68. McQuaid CF, Britton NF (2013) Network dynamics contribute to structure: nestedness in mutualistic networks. Bull Math Biol 75:2372–2388PubMedCrossRefGoogle Scholar
  69. Memmott JJ, Waser NMN, Price MVM (2004) Tolerance of pollination networks to species extinctions. Proc R Soc Lond 271:2605–2611CrossRefGoogle Scholar
  70. Moles AT, Ackerly DD, Webb CO et al (2005) A brief history of seed size. Science 307:576–580PubMedCrossRefGoogle Scholar
  71. Mougi A, Kondoh M (2012) Diversity of interaction types and ecological community stability. Science 337:349–351PubMedCrossRefGoogle Scholar
  72. Müller F (1879) Ituna and Thyridia; a remarkable case of mimicry in butterflies. Trans Entomol Soc London 1879:xx–xxixGoogle Scholar
  73. Nosil P (2012) Ecological speciation. Oxford University Press, OxfordCrossRefGoogle Scholar
  74. Nuismer SL, Gomulkiewicz R, Ridenhour BJ (2010) When is correlation coevolution? Am Nat 175:525–537PubMedCrossRefGoogle Scholar
  75. Nuismer SL, Jordano P, Bascompte J (2013) Coevolution and the architecture of mutualistic networks. Evolution 67:338–354PubMedCrossRefGoogle Scholar
  76. Olesen J, Bascompte J, Dupont YL et al (2007) The modularity of pollination networks. Proc Natl Acad Sci U S A 104:19891PubMedPubMedCentralCrossRefGoogle Scholar
  77. Olesen J, Bascompte J, Elberling H et al (2008) Temporal dynamics in a pollination network. Ecology 89:1573–1582PubMedCrossRefGoogle Scholar
  78. Olesen J, Bascompte J, Dupont YL et al (2011) Missing and forbidden links in mutualistic networks. Proc R Soc Lond 278:725–732CrossRefGoogle Scholar
  79. Ollerton J (2006) “Biological barter”: patterns of specialization compared across different mutualisms. In: Waser NM, Ollerton J (eds) Plant pollinator interactions: from specialization to generalization. University of Chicago Press, Chicago, pp 411–435Google Scholar
  80. Pacheco JM, Traulsen A, Nowak MA (2006) Coevolution of strategy and structure in complex networks with dynamical linking. Phys Rev Lett 97:258103PubMedPubMedCentralCrossRefGoogle Scholar
  81. Pfennig DW, Pfennig KS (2012) Development and evolution of character displacement. Ann N Y Acad Sci 1256:89–107PubMedPubMedCentralCrossRefGoogle Scholar
  82. Pires MM, Guimarães PR Jr (2013) Interaction intimacy organizes networks of antagonistic interactions in different ways. J R Soc Interface 10:20120649PubMedPubMedCentralCrossRefGoogle Scholar
  83. Pires MM, Marquitti FMD, Guimarães PR Jr (2017) The friendship paradox in species-rich ecological networks: implications for conservation and monitoring. Biol Conserv 209:245–252CrossRefGoogle Scholar
  84. Poisot T, Stouffer DB, Gravel D (2015) Beyond species: why ecological interaction networks vary through space and time. Oikos 124:243–251CrossRefGoogle Scholar
  85. Post DM, Palkovacs EP (2009) Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Philos Trans R Soc B 364:1629–1640CrossRefGoogle Scholar
  86. Ramos-Jiliberto R, Valdovinos FS, Moisset de Espanés P et al (2012) Topological plasticity increases robustness of mutualistic networks. J Anim Ecol 81:896–904PubMedCrossRefGoogle Scholar
  87. Rohr RP, Saavedra S, Bascompte J (2014) On the structural stability of mutualistic systems. Science 345:1253497PubMedCrossRefGoogle Scholar
  88. Russo L, Memmott JJ, Montoya D et al (2014) Patterns of introduced species interactions affect multiple aspects of network structure in plant-pollinator communities. Ecology 95:2953–2963Google Scholar
  89. Sazatornil FD, More M, Benitez-Vieyra S et al (2016) Beyond neutral and forbidden links: morphological matches and the assembly of mutualistic hawkmoth-plant networks. J Anim Ecol 85:1586–1594PubMedCrossRefGoogle Scholar
  90. Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429PubMedCrossRefGoogle Scholar
  91. Siepielski AM, Benkman CW (2009) Conflicting selection from an antagonist and a mutualist enhances phenotypic variation in a plant. Evolution 64:1120–1128PubMedCrossRefGoogle Scholar
  92. Strauss SY (2014) Ecological and evolutionary responses in complex communities: implications for invasions and eco-evolutionary feedbacks. Oikos 123:257–266CrossRefGoogle Scholar
  93. Suweis S, Simini F, Banavar JR et al (2013) Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500:449–452PubMedCrossRefGoogle Scholar
  94. Thebault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329(5993):853–856Google Scholar
  95. Thompson JN (1998) Rapid evolution as an ecological process. Trends Ecol Evol 13:329–332PubMedCrossRefGoogle Scholar
  96. Thompson JN (2005) The geographic mosaic of coevolution. The University of Chicago Press, ChicagoGoogle Scholar
  97. Thompson JN (2009) The coevolving web of life. Am Nat 173:125–140PubMedCrossRefGoogle Scholar
  98. Thompson JN (2013) Relentless evolution. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  99. Toju H, Sota T (2006) Imbalance of predator and prey armament: geographic clines in phenotypic interface and natural selection. Am Nat 167:105–117PubMedCrossRefGoogle Scholar
  100. Urban MCC, Skelly DK (2006) Evolving metacommunities: toward an evolutionary perspective on metacommunities. Ecology 87:1616–1626PubMedCrossRefGoogle Scholar
  101. Valdovinos FS, Ramos-Jiliberto R, Flores JD et al (2009) Structure and dynamics of pollination networks: the role of alien plants. Oikos 118:1190–1200CrossRefGoogle Scholar
  102. Valdovinos FS, Ramos-Jiliberto R, Garay-Narváez L et al (2010) Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecol Lett 13:1546–1559PubMedCrossRefGoogle Scholar
  103. Valdovinos FS, Brosi BJ, Briggs HM et al (2016) Niche partitioning due to adaptive foraging reverses effects of nestedness and connectance on pollination network stability. Ecol Lett 19:1277–1286Google Scholar
  104. Vasseur DA, Fox JW (2011) Adaptive dynamics of competition for nutritionally complementary resources: character convergence, displacement, and parallelism. Am Nat 178:501–514PubMedCrossRefGoogle Scholar
  105. Vasseur DA, Amarasekare P, Rudolf VHW et al (2011) Eco-evolutionary dynamics enable coexistence via neighbor-dependent selection. Am Nat 178:E96–E109PubMedCrossRefGoogle Scholar
  106. Vázquez DP, Blüthgen N, Cagnolo L et al (2009) Uniting pattern and process in plant-animal mutualistic networks: a review. Ann Bot 103:1445–1457PubMedPubMedCentralCrossRefGoogle Scholar
  107. Vizentin-Bugoni J, Maruyama PK, Sazima M (2014) Processes entangling interactions in communities: forbidden links are more important than abundance in a hummingbird-plant network. Proc R Soc Lond 281:20132397CrossRefGoogle Scholar
  108. Volterra V (1926) Fluctuations in the abundance of a species considered mathematically. Nature 118:558–560CrossRefGoogle Scholar
  109. Weitz JS, Levin SA (2006) Size and scaling of predator-prey dynamics. Ecol Lett 9:548–557PubMedCrossRefGoogle Scholar
  110. Yamauchi A, Yamamura N (2005) Effects of defense and diet choice on population dynamics in one-predator-two-prey system. Ecology 86:2513–2524CrossRefGoogle Scholar
  111. Yeakel JD, Stiefs D, Novak M, Gross T (2011) Generalized modeling of ecological population dynamics. Theor Ecol 4:179–194CrossRefGoogle Scholar
  112. Yodzis P, Innes S (1992) Body-size and consumer-resource dynamics. Am Nat 139:1151–1173CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Rafael Luís Galdini Raimundo
    • 1
    • 2
  • Flavia Maria Darcie Marquitti
    • 3
  • Cecilia Siliansky de Andreazzi
    • 4
  • Mathias Mistretta Pires
    • 2
  • Paulo Roberto GuimarãesJr
    • 2
  1. 1.Departamento de Engenharia e Meio Ambiente and Programa de Pós-Graduação em Ecologia e Monitoramento AmbientalCentro de Ciências Aplicadas e Educação, Universidade Federal da ParaíbaRio TintoBrazil
  2. 2.Departamento de EcologiaInstituto de Biociências, Universidade de São PauloSão PauloBrazil
  3. 3.Departamento de Física da Matéria CondensadaInstituto de Física “Gleb Wataghin”, Universidade Estadual de CampinasCampinasBrazil
  4. 4.Fundação Oswaldo CruzRio de JaneiroBrazil

Personalised recommendations