Skip to main content

The Future of Ecological Networks in the Tropics

  • Chapter
  • First Online:

Abstract

Ecological networks are one of the best approaches to describe interactive communities of species. Accordingly, the development of network studies in the tropics is imperative given the high rates of habitat loss and transformation. To achieve this goal, we face the challenge of dealing with extreme complexity but lacking complete taxonomic and natural history information. In this chapter, I analyze the trajectory of network studies in the tropics over time and describe some promising avenues for the study of ecological networks in the next years. I built keyword co-occurrence networks of network studies in the tropics for four periods from 1970 to the present. The earliest network studies were concentrated on food webs; in the following decades, network studies rose dramatically and diversified, generating topic modules about different interaction types. The last period (2010–2016) reflects a mix of different research areas, with food web studies being less important and much more connected with other topics such as frugivory and myrmecophily. One of the major challenges of network research in the tropics is to increase the level of network complexity. Here, I propose two ways: merging different interaction types into single networks and disaggregating data into their spatial, temporal, and individual-level layers. The multilayer approach requires new conceptual and methodological frameworks that are starting to be formalized. One of these tools is barcode sequencing directly from DNA extracted from consumers, which provide strong physical evidence for the host association and facilitates phylogenetic analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aizen M, Sabatino M, Tylianakis J (2012) Specialization and rarity predict nonrandom loss of interactions from mutualist networks. Science 335:1486–1489

    Article  CAS  PubMed  Google Scholar 

  • Barlow J, Lennox G, Ferreira J et al (2016) Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature 535:144–147

    Article  CAS  PubMed  Google Scholar 

  • Baskerville E, Dobson A, Bedford T et al (2011) Spatial guilds in the Serengeti food web revealed by a Bayesian Group Model. PLoS Comput Biol 7:e1002321

    Google Scholar 

  • Bates HW (1864) The naturalist on the river Amazons. Cambridge University Press, London

    Google Scholar 

  • Boone C, Six D, Zheng Y, Raffa K (2008) Parasitoids and dipteran predators exploit volatiles from microbial symbionts to locate bark beetles. Environ Entomol 37:150–161

    Article  PubMed  Google Scholar 

  • Borthagaray A, Arim M, Marquet P (2014) Inferring species roles in metacommunity structure from species co-occurrence networks. Proc R Soc Lond B Biol Sci 281:20141425

    Article  Google Scholar 

  • Briand F, Cohen J (1984) Community food webs have scale-invariant structure. Nature 307:264–267

    Article  Google Scholar 

  • Cohen J, Schittler D, Raffaelli D, Reuman D (2009) Food webs are more than the sum of their tritrophic parts. Proc Natl Acad Sci U S A 106:22335–22340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin C, Wallace A (1858) On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. Proc Linn Soc L 3:45–62

    Article  Google Scholar 

  • Dáttilo W, Lara-Rodríguez N, Jordano P et al (2016) Unravelling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proc R Soc Lond B Biol Sci 283:20161564

    Article  Google Scholar 

  • Dunne J (2006) The network structure of food webs. In: Pascual M, Dunne J (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, Oxford, pp 27–86

    Google Scholar 

  • Dupont Y, Trøjelsgaard K, Hagen M et al (2014) Spatial structure of an individual-based plant–pollinator network. Oikos 123:1301–1310

    Article  Google Scholar 

  • Dyer LA, Letourneau DK (1999) Trophic cascades in a complex terrestrial community. Proc Natl Acad Sci U S A 96:5072–5076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erwin TL (1991) How many species are there?: revisited. Conserv Biol 5:330–333

    Article  Google Scholar 

  • Evans D, Kitson J, Lunt D et al (2016) Merging DNA metabarcoding and ecological network analysis to understand and build resilient terrestrial ecosystems. Funct Ecol 30:1904–1916

    Article  Google Scholar 

  • Fontaine C, Guimarães P, Kéfi S et al (2011) The ecological and evolutionary implications of merging different types of networks. Ecol Lett 14:1170–1181

    Article  PubMed  Google Scholar 

  • González-Varo JP, Arroyo JM, Jordano P (2014) Who dispersed the seeds? The use of DNA barcoding in frugivory and seeds dispersal studies. Method Ecol Evol 5:806–814

    Article  Google Scholar 

  • Heard S, Stireman J, Nason J et al (2006) On the elusiveness of enemy-free space: spatial, temporal, and host-plant-related variation in parasitoid attack rates on three gallmakers of goldenrods. Oecologia 150:421–434

    Article  PubMed  Google Scholar 

  • Ings T, Montoya J, Bascompte J et al (2009) Review: ecological networks – beyond food webs. J Anim Ecol 78:253–269

    Article  PubMed  Google Scholar 

  • Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am Nat 129:657–677

    Article  Google Scholar 

  • Kéfi S, Miele V, Wieters EA et al (2016) How structured is the entangled bank? The surprisingly simple organization of multiplex ecological networks leads to increased persistence and resilience. PLoS Biol 14:e1002527

    Article  PubMed  PubMed Central  Google Scholar 

  • Leppänen S, Altenhofer E, Liston A, Nyman T (2013) Ecological versus phylogenetic determinants of trophic associations in a plant-leafminer-parasitoid food web. Evolution 67:1493–1502

    PubMed  Google Scholar 

  • Lewinsohn T, Cagnolo L (2012) Keystones in a tangled Bank. Science 335:1449–1451

    Article  CAS  PubMed  Google Scholar 

  • Lewinsohn T, Novotny V, Basset Y (2005) Insects on plants: diversity of herbivore assemblages revisited. Annu Rev Ecol Syst 36:597–620

    Article  Google Scholar 

  • Lewis O, Memmott J, Lasalle J et al (2002) Structure of a diverse tropical forest insect-parasitoid community. J Anim Ecol 71:855–873

    Article  Google Scholar 

  • Melián CJ, Bascompte J, Jordano P et al (2009) Diversity in a complex ecological network with two interaction types. Oikos 118:122–130

    Article  Google Scholar 

  • Memmott J (1999) The structure of a plant-pollinator food web. Ecol Lett 2:276–280

    Article  Google Scholar 

  • Memmott J, Godfray H, Gauld D (1994) The structure of a tropical host-parasitoid community. J Anim Ecol 63:521–540

    Article  Google Scholar 

  • Murata T (2010) Detecting communities from tripartite networks. Paper presented at the 19th international world wide web conference, Raleigh, NC, USA, 26–30 April 2010

    Google Scholar 

  • Novotny V, Basset Y (2005) Host specificity of insect herbivores in tropical forests. Proc R Soc Lond B Biol Sci 272:1083–1090

    Article  Google Scholar 

  • Novotny V, Miller SE, Baje L et al (2010) Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest. J Anim Ecol 79:1193–1203

    Article  PubMed  Google Scholar 

  • Olesen J, Dupont Y, O’Gorman E (2010) From Broadstone to Zackenberg: space, time and hierarchies in ecological networks. In: Woodward G (ed) Advances in ecological research, vol 42. Academic Press, Burlington, pp 1–69

    Google Scholar 

  • Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818

    Article  CAS  PubMed  Google Scholar 

  • Pilosof S, Morand S, Krasnov BR, Nunn CL (2015). Potential parasite transmission in multi-host networks based on parasite sharing. PloS one, 10(3), e0117909.

    Google Scholar 

  • Pilosof S, Porter M, Pascual M, Kéfi S (2017) The multilayer nature of ecological networks. Nat Ecol Evol 1:0101.

    Google Scholar 

  • Pimm S, Kitching R (1987) The determinants of food chain lengths. Oikos 50:302–307

    Article  Google Scholar 

  • Pimm S, Lawton J (1980) Are food webs divided into compartments? J Anim Ecol 49:879–898

    Article  Google Scholar 

  • Pimm S, Raven P (2000) Biodiversity: extinction by numbers. Nature 403:843–845

    Article  CAS  PubMed  Google Scholar 

  • Pocock M, Evans D, Memmott J (2012) The robustness and restoration of a network of ecological networks. Science 335:973–977

    Article  CAS  PubMed  Google Scholar 

  • Poisot T, Stouffer D, Gravel D (2014) Beyond species: why ecological interaction networks vary through space and time. Oikos 124:243–251

    Article  Google Scholar 

  • Poisot T, Stouffer D, Kéfi S (2016) Describe, understand and predict: why do we need networks in ecology? Funct Ecol 30:1878–1882

    Article  Google Scholar 

  • Polis GA (1991) Complex trophic interactions in deserts: an empirical critique of food-web theory. Am Nat 138:123–155

    Article  Google Scholar 

  • Polis G, Sears A, Huxel G et al (2000) When is a trophic cascade a trophic cascade? Trends Ecol Evol 15:473–475

    Article  CAS  PubMed  Google Scholar 

  • Roeder K, Kaspari M (2017) From cryptic herbivore to predator: stable isotopes reveal consistent variability in trophic levels in an ant population. Ecology 98:297–303

    Article  PubMed  Google Scholar 

  • Schemske DW, Mittelbach GG, Cornell HV et al (2009) Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst 40:245–269

    Article  Google Scholar 

  • Schoenly K, Cohen JE (1991) Temporal variation in food web structure: 16 empirical cases. Ecol Monogr 61:267–298

    Article  Google Scholar 

  • Smith A, Rodriguez J, Whitfield J et al (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci U S A 105:12359–12364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solé RV, Montoya JM (2006) Ecological network meltdown from habitat loss and fragmentation. In: Pascual M, Dunne J (eds) Ecological networks: linking structure to dynamics in food webs. Oxford University Press, Oxford, pp 305–323

    Google Scholar 

  • Trøjelsgaard K, Olesen J (2016) Ecological networks in motion: micro- and macroscopic variability across scales. Funct Ecol 30:1926–1935

    Article  Google Scholar 

  • Tur C, Vigalondo B, Trøjelsgaard K et al (2014) Downscaling pollen transport networks to the level of individuals. J Anim Ecol 83:306–317

    Article  PubMed  Google Scholar 

  • Vázquez D, Chacoff N, Cagnolo L (2009) Evaluating multiple determinants of the structure of plant-animal mutualistic networks. Ecology 90:2039–2046

    Article  PubMed  Google Scholar 

  • Wirta H, Hebert P, Kaartinen R et al (2014) Complementary molecular information changes our perception of food web structure. Proc Natl Acad Sci U S A 111:1885–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

L.C. is a career researcher with Consejo Nacional de Investigaciones Científicas y Técnicas of Argentina. This work was supported by a grant from FONCYT–ANPCYT (PICT 2014-3168).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Cagnolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cagnolo, L. (2018). The Future of Ecological Networks in the Tropics. In: Dáttilo, W., Rico-Gray, V. (eds) Ecological Networks in the Tropics. Springer, Cham. https://doi.org/10.1007/978-3-319-68228-0_12

Download citation

Publish with us

Policies and ethics