Skip to main content

Introduction

  • Chapter
  • First Online:
High-Fidelity Quantum Logic in Ca+

Part of the book series: Springer Theses ((Springer Theses))

  • 344 Accesses

Abstract

The 20th century has been profoundly influenced by the development of fast, automated, information processing. One of the ground-breaking concepts that made many of the daunting theoretical and practical problems of such information processing tractable is this: the details of the physical device used for a computation do not matter – all ‘useful’ computers, no matter how they physically operate, are equivalent in terms of the classes of problems they can solve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deutsch, D. 1985. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 400 (1818): 97–117.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. DiVincenzo, D.P. 2000. The physical implementation of quantum computation. Fortschritte der Physik 48: 771–783.

    Article  ADS  MATH  Google Scholar 

  3. Kitaev, A.Y. 1997. Quantum computations: algorithms and error correction. Russian Mathematical Surveys 52 (6): 1191–1249.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Fowler, A.G., M. Mariantoni, J.M. Martinis, and A.N. Cleland. 2012. Surface codes: Towards practical large-scale quantum computation. Physical Review A 86 (3): 032324.

    Article  ADS  Google Scholar 

  5. Monroe, C., and J. Kim. 2013. Scaling the Ion Trap Quantum Processor. Science 339 (6124): 1164–1169.

    Article  ADS  Google Scholar 

  6. Blatt, R., and D.J. Wineland. 2008. Entangled states of trapped atomic ions. Nature 453 (7198): 1008–15.

    Article  ADS  Google Scholar 

  7. Devoret, M.H., and R.J. Schoelkopf. 2013. Superconducting circuits for quantum information: an outlook. Science 339 (6124): 1169–74.

    Article  ADS  Google Scholar 

  8. Bollinger, J.J., and D. Heizen. 1991. A 303-MHz frequency standard based on trapped Be+ ions. IEEE Transactions on Instrumentation and Measurement 40 (2): 126–128.

    Article  Google Scholar 

  9. Cirac, J.I. and P. Zoller. Quantum Computations with Cold Trapped Ions. Physical Review Letters, 74(20), 1995.

    Google Scholar 

  10. Wineland, D.J., C. Monroe, W.M. Itano, D. Leibfried, B.E. King, and D.M. Meekhof. Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions. Journal Of Research Of The National Institute Of Standards And Technology, 103(3), 1998.

    Google Scholar 

  11. Nickerson, N.H., J.F. Fitzsimons, and S.C. Benjamin. Freely Scalable Quantum Technologies using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links. ArXiv, June 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Ballance .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ballance, C.J. (2017). Introduction. In: High-Fidelity Quantum Logic in Ca+. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-68216-7_1

Download citation

Publish with us

Policies and ethics