Posture and Locomotion

  • R. RitzmannEmail author
  • A. Gollhofer
  • K. Freyler
Part of the SpringerBriefs in Space Life Sciences book series (BRIEFSSLS)


Gravity affects the human body in numerous ways. This chapter reviews recent findings on how the nervous system governs muscle forces to control upright posture and locomotion in varying gravity conditions. With an emphasis on gravity conditions below Earth gravitation, three major aspects for the control of stance and gait are presented for short-term and long-term adaptation: the integration of sensory feedback via spinal and supraspinal circuitries to command the neuromuscular system governing the movement and the biomechanical output which defines the quality of these motor skills. Numerous experiments executed in space flight or simulation studies frame the content of this chapter that contains the sub-themes: posture control and locomotion.


Central nervous system Reflex Spinal Supraspinal Sensory feedback Biomechanics Musculature Pertubation Swing phase Stance phase Body segments Stretch-shortening cycle Force Contraction Movement 


  1. Ali AA, Sabbahi MA (2000) H-reflex changes under spinal loading and unloading conditions in normal subjects. Clin Neurophysiol 111(4):664–670PubMedCrossRefGoogle Scholar
  2. Anderson DJ, Reschke MF, Homick JE et al (1986) Dynamic posture analysis of Spacelab-1 crew members. Exp Brain Res 64(2):380–391PubMedCrossRefGoogle Scholar
  3. Avela J, Santos PM, Kyrolainen H et al (1994) Effects of different simulated gravity conditions on neuromuscular control in drop jump exercises. Aviat Space Environ Med 65(4):301–308PubMedGoogle Scholar
  4. Baroni G, Pedrocchi A, Ferrigno G et al (2001) Static and dynamic postural control in long-term microgravity: evidence of a dual adaptation. J Appl Physiol 90(1):205–215PubMedGoogle Scholar
  5. Bloomberg JJ, Reschke MF, Peters BT et al (1994) Head stability during treadmill locomotion following space flight. Aviat Space Environ Med 65:449Google Scholar
  6. Bloomberg JJ, Peters BT, Smith SL et al (1997) Locomotor head-trunk coordination strategies following space flight. J Vestib Res 7(2–3):161–177PubMedCrossRefGoogle Scholar
  7. Bloomberg JJ, McDonald PV, Peters BT et al (1999) Effects of space flight on locomotor control. In: Sawin CF (ed) Extended duration orbiter medical project. NASA Johnson Space Center, Houston, pp 5.5-1–5.5-57Google Scholar
  8. Boyle R, Mensinger AF, Yoshida K et al (2001) Neural readaptation to Earth’s gravity following return from space. J Neurophysiol 86(4):2118–2122PubMedGoogle Scholar
  9. Bryanov II, Yemel’yanov MD, Matveyev AD et al (1976) Characteristics of statokinetic reactions. In: Gazenko OG, Kakurin LI, Kuznetsov AG (eds) Kosmicheskiye Polety na Korablyakh “soyuz” Biomeditsinskiye Issledovaniya. 5.5–5.31 Biomedical research. Nauka Press, Moscow. English Edition: Space flights in the soyuz spacecraft. Leo Kanner Associates, Redwood City, CA, pp 1–416Google Scholar
  10. Carriot J, Jamali M, Cullen KE (2015) Rapid adaptation of multisensory integration in vestibular pathways. Front Syst Neurosci 9(59):1–5. Google Scholar
  11. Cavagna GA, Zamboni A, Faraggiana T et al (1972) Jumping on the moon Power output at different gravity values. Aerosp Med 43(4):408–414PubMedGoogle Scholar
  12. Cavagna GA, Willems PA, Heglund NC (2000) The role of gravity in human walking pendular energy exchange, external work and optimal speed. J Physiol 528(3):657–668. PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chekirda IF, Yermin AV (1977) Dynamics of cyclic and acyclic locomotion of the Soyuz-18 crew after a 63- day space mission. Kosm Biol Aviakosm Med 4:9–13Google Scholar
  14. Chekirda IF, Bogdashevskiy AV, Yeremin AV et al (1971) Coordination structure of walking of Soyuz-9 crew members be-fore and after flight. Kosm Biol Med 5:48–52Google Scholar
  15. Clarke AH, Grigull J, Mueller R et al (2000) The three-dimensional vestibulo-ocular reflex during prolonged microgravity. Exp Brain Res 134(3):322–334. PubMedCrossRefGoogle Scholar
  16. Clément G, André-Deshays C (1987) Motor activity and visually induced postural reactions during two-g and zero-g phases of parabolic flight. Neurosci Lett 79(1–2):113–116. PubMedCrossRefGoogle Scholar
  17. Clément G, Lestienne F (1988) Adaptive modifications of postural attitude in conditions of weightlessness. Exp Brain Res 72(2):381–389. PubMedCrossRefGoogle Scholar
  18. Clément G, Gurfinkel VS, Lestienne F et al (1984) Adaptation of postural control to weightlessness. Exp Brain Res 57(1):61–72. PubMedCrossRefGoogle Scholar
  19. Clément G, Gurfinkel VS, Lestienne F et al (1985) Changes of posture during transient perturbations in microgravity. Aviat Space Environ Med 56(7):666–671PubMedGoogle Scholar
  20. Clément G, Darlot C, Petropoulos A et al (1995) Eye movements and motion perception induced by off-vertical axis rotation (OVAR) at small angles of tilt after spaceflight. Acta Otolaryngol 115(5):603–609. PubMedCrossRefGoogle Scholar
  21. Clément G, Reschke M, Wood S (2005) Neurovestibular and sensorimotor studies in space and earth benefits. Curr Pharm Biotechnol 6(4):267–283. PubMedCrossRefGoogle Scholar
  22. Collins JJ, de Luca CJ, Pavlik AE et al (1995) The effects of spaceflight on open-loop and closed-loop postural control mechanisms: human neurovestibular studies on SLS-2. Exp Brain Res 107(1):145–150PubMedCrossRefGoogle Scholar
  23. Courtine G, Pozzo T (2004) Recovery of the locomotor function after prolonged microgravity exposure. I. Head-trunk movement and locomotor equilibrium during various tasks. Exp Brain Res 158(1):86–99. PubMedCrossRefGoogle Scholar
  24. Dai M, McGarvie L, Kozlovskaya I et al (1994) Effects of spaceflight on ocular counterrolling and the spatial orientation of the vestibular system. Exp Brain Res 102(1):45–56PubMedCrossRefGoogle Scholar
  25. D’Andrea SE, Perusek GP, Rajulu S et al (2005) Jumping in simulated and true microgravity: response to maximal efforts with three landing types. Aviat Space Environ Med 76(5):441–447PubMedGoogle Scholar
  26. Demertzi A, van Ombergen A, Tomilovskaya E et al (2016) Cortical reorganization in an astronaut’s brain after long-duration spaceflight. Brain Struct Funct 221(5):2873–2876. PubMedCrossRefGoogle Scholar
  27. Di Prampero PE, Narici MV (2003) Muscles in microgravity: from fibres to human motion. J Biomech 36(3):403–412PubMedCrossRefGoogle Scholar
  28. Dichgans J, Mauritz KH, Allum JH et al. (1976) Postural sway in normals and atactic patients: analysis of the stabilising and destabilizing effects of vision. Agressologie 17(C Spec No):15–24Google Scholar
  29. Diener HC, Horak FB, Nashner LM (1988) Influence of stimulus parameters on human postural responses. J Neurophysiol 59(6):1888–1905PubMedGoogle Scholar
  30. Dietz V (2002) Proprioception and locomotor disorders. Nat Rev Neurosci 3(10):781–790. PubMedCrossRefGoogle Scholar
  31. Dietz V, Gollhofer A, Kleiber M et al (1992) Regulation of bipedal stance: dependency on “load” receptors. Exp Brain Res 89(1):229–231PubMedCrossRefGoogle Scholar
  32. Dietz V, Horstmann GA, Trippel M et al (1989) Human postural reflexes and gravity-an under water simulation. Neurosci Lett 106(3):350–355PubMedCrossRefGoogle Scholar
  33. Edgerton VR, Roy RR, Recktenwald MR et al (2000) Neural and neuroendocrine adaptations to microgravity and ground-based models of microgravity. J Gravit Physiol 7(3):45–52PubMedGoogle Scholar
  34. Farley CT, McMahon TA (1992) Energetics of walking and running Insights from simulated reduced-gravity experiments. J Appl Physiol (1985) 73(6):2709–2712Google Scholar
  35. Ferris DP, Aagaard P, Simonsen EB et al (2001) Soleus H-reflex gain in humans walking and running under simulated reduced gravity. J Physiol 530(Pt 1):167–180PubMedPubMedCentralCrossRefGoogle Scholar
  36. Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review microgravity and skeletal muscle. J Physiol 89(2):823–839Google Scholar
  37. Freyler K, Weltin E, Gollhofer A et al (2014) Improved postural control in response to a 4-week balance training with partially unloaded bodyweight. Gait Posture 40(2):291–296. PubMedCrossRefGoogle Scholar
  38. Freyler K, Gollhofer A, Colin R et al (2015) Reactive balance control in response to perturbation in unilateral stance interaction effects of direction, displacement and velocity on compensatory neuromuscular and kinematic responses. PLoS One 10(12):e0144529. PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gambelli CN, Theisen D, Willems PA et al (2015) Motor control of landing from a jump in simulated hypergravity. PLoS One 10(10):e0141574. PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gambelli CN, Theisen D, Willems PA et al (2016) Motor control of landing from a countermovement jump in simulated microgravity. J Appl Physiol 120(10):1230–1240. PubMedCrossRefGoogle Scholar
  41. Gollhofer A, Kyrolainen H (1991) Neuromuscular control of the human leg extensor muscles in jump exercises under various stretch-load conditions. Int J Sports Med 12(1):34–40PubMedCrossRefGoogle Scholar
  42. Granacher U, Gollhofer A, Strass D (2006) Training induced adaptations in characteristics of postural reflexes in elderly men. Gait Posture 24(4):459–466. PubMedCrossRefGoogle Scholar
  43. Grossman GE, Leigh RJ, Abel LA et al (1988) Frequency and velocity of rotational head perturbations during locomotion. Exp Brain Res 70(3):470–476PubMedCrossRefGoogle Scholar
  44. Guimaraes RM, Isaacs B (1980) Characteristics of the gait in old people who fall. Int Rehabil Med 2(4):177–180PubMedCrossRefGoogle Scholar
  45. Hallgren E, Kornilova L, Fransen E et al (2016) Decreased otolith-mediated vestibular response in 25 astronauts induced by long-duration spaceflight. J Neurophysiol 115(6):3045–3051. PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hausdorff JM (2005) Gait variability methods, modeling and meaning. J Neuroeng Rehabil 2:19. PubMedPubMedCentralCrossRefGoogle Scholar
  47. He JP, Kram R, McMahon TA (1991) Mechanics of running under simulated low gravity. J Appl Physiol (1985) 71(3):863–870Google Scholar
  48. Hernandez-Korwo R, Kozlovskaya IB, Kreydich YV et al (1983) Effect of seven-day space flight on structure and function of human locomotor system. Kosm Biol Aviakosm Med 17:37–44Google Scholar
  49. Hlavacka F, Kornilova LN (2004) Velocity of head movements and sensory-motor adaptation during and after short spaceflight. J Gravit Physiol 11(2):13–16Google Scholar
  50. Hlavacka F, Dzurkova O, Kornilova LN (2001) Vestibular and somatosensory interaction during recovery of balance instability after spaceflight. J Gravit Physiol 8(1):89–92Google Scholar
  51. Homick JL, Reschke MF (1977) Postural equilibrium following exposure to weightless space flight. Acta Otolaryngol 83(1-6):455–464. CrossRefGoogle Scholar
  52. Hortobágyi T, Solnik S, Gruber A et al (2009) Interaction between age and gait velocity in the amplitude and timing of antagonist muscle coactivation. Gait Posture 29(4):558–564. PubMedCrossRefGoogle Scholar
  53. Hunt KD (1994) The evolution of human bipedality Ecology and functional morphology. J Hum Evol 26(3):183–202CrossRefGoogle Scholar
  54. Hytönen M, Pyykkö I, Aalto H et al (1993) Postural control and age. Acta Otolaryngol 113(2):119–122PubMedCrossRefGoogle Scholar
  55. Kalb R, Solomon D (2007) Space exploration, Mars, and the nervous system. Arch Neurol 64(4):485–490. PubMedCrossRefGoogle Scholar
  56. Kenyon RV, Young LR (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 5. Postural responses following exposure to weightlessness. Exp Brain Res 64(2):335–346PubMedCrossRefGoogle Scholar
  57. Komi PV (1984) Physiological and biomechanical correlates of muscle function: effects of muscle structure and stretch-shortening cycle on force and speed. Exerc Sport Sci Rev 12:81–121PubMedCrossRefGoogle Scholar
  58. Kornilova LN, Naumov IA, Azarov KA et al (2012) Gaze control and vestibular-cervical-ocular responses after prolonged exposure to microgravity. Aviat Space Environ Med 83(12):1123–1134PubMedCrossRefGoogle Scholar
  59. Kozlovskaya IB, Kreidich Y, Oganov VS et al (1981) Pathophysiology of motor functions in prolonged manned space flights. Acta Astronaut 8(9–10):1059–1072PubMedCrossRefGoogle Scholar
  60. Kozlovskaya IB, Aslanova IF, Grigorieva LS et al (1982) Experimental analysis of motor effects of weightlessness. Physiologist 25(6):49–52Google Scholar
  61. Kozlovskaya IB, Barmin VA, Kreidich Y et al (1985) The effects of real and simulated microgravity on vestibulo-oculomotor interaction. Physiologist 28(6 Suppl):51–56Google Scholar
  62. Kozlovskaya IB, Barmin VA, Stepantsov VI et al (1990) Results of studies of motor functions in long-term space flights. Physiologist 33(Suppl):1–3Google Scholar
  63. Kramer A, Ritzmann R, Gruber M et al (2012) Leg stiffness can be maintained during reactive hopping despite modified acceleration conditions. J Appl Biomech 45(10):1816–1822. CrossRefGoogle Scholar
  64. Lackner JR, DiZio P (1992) Gravitoinertial force level affects the appreciation of limb position during muscle vibration. Brain Res 592(1–2):175–180PubMedCrossRefGoogle Scholar
  65. Lackner JR, DiZio P (1993) Multisensory, cognitive, and motor influences on human spatial orientation in weightlessness. J Vestibul Res 3(3):361–372Google Scholar
  66. Lackner JR, DiZio P (1996) Motor function in microgravity: movement in weightlessness. Curr Opin Neurobiol 6(6):744–750PubMedCrossRefGoogle Scholar
  67. Lackner JR, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130(1):2–26PubMedCrossRefGoogle Scholar
  68. Lambertz D, Perot C, Kaspranski R et al (2001) Effects of long-term spaceflight on mechanical properties of muscles in humans. J Appl Physiol 90(1):179–188PubMedGoogle Scholar
  69. Layne CS, Spooner BS (1994) Microgravity effects on “postural” muscle activity patterns. Adv Space Res 14(8):381–384PubMedCrossRefGoogle Scholar
  70. Layne CS, McDonald PV, Bloomberg JJ (1997) Neuromuscular activation patterns during treadmill walking after space flight. Exp Brain Res 113(1):104–116PubMedCrossRefGoogle Scholar
  71. Layne CS, Mulavara AP, McDonald PV et al (2001) Effect of long-duration spaceflight on postural control during self-generated perturbations. J Appl Physiol 90(3):997–1006PubMedGoogle Scholar
  72. Lestienne F, Gurfinkel V (1988) Postural control in weightlessness a dual process underlying adaptation to an unusual environment. Trends Neurosci 11(8):359–363PubMedCrossRefGoogle Scholar
  73. Mader TH, Gibson CR, Pass AF et al (2011) Optic disc edema, globe flattening, choroidal folds, and hyperopic shifts observed in astronauts after long-duration space flight. Ophthalmology 118(10):2058–2069. PubMedCrossRefGoogle Scholar
  74. Margaria R (1973) Biomechanics of locomotion in subgravity. Adv Space Res 11:177–185Google Scholar
  75. Margaria R, Cavagna GA (1964) Human locomotion in subgravity. Aerosp Med 35:1140–1146PubMedGoogle Scholar
  76. Masani K, Sayenko DG, Vette AH (2013) What triggers the continuous muscle activity during upright standing? Gait Posture 37(1):72–77. PubMedCrossRefGoogle Scholar
  77. Massion J (1998) Postural control systems in developmental perspective. Neurosci Biobehav Rev 22(4):465–472PubMedCrossRefGoogle Scholar
  78. Massion J, Alexandrov A, Frolov A (2005) Why and how are posture and movement coordinated? In: Mori S, Pierce PA (eds) International symposium: brain mechanisms for the integration of posture and movement, Okazaki, Japan, March 2001, vol 143. Elsevier, Amsterdam, pp 13–27Google Scholar
  79. Mauritz KH, Dietz V (1980) Characteristics of postural instability induced by ischemic blocking of leg afferents. Exp Brain Res 38(1):117–119PubMedCrossRefGoogle Scholar
  80. McDonagh MJN, Duncan A (2002) Interaction of pre-programmed control and natural stretch reflexes in human landing movements. J Physiol 544(Pt 3):985–994PubMedPubMedCentralCrossRefGoogle Scholar
  81. McDonald PV, Basdogan C, Bloomberg JJ et al (1996) Lower limb kinematics during treadmill walking after space flight Implications for gaze stabilization. Exp Brain Res 112(2):325–334PubMedCrossRefGoogle Scholar
  82. Mergner T, Rosemeier T (1998) Interaction of vestibular, somatosensory and visual signals for postural control and motion perception under terrestrial and microgravity conditions—a conceptual model. Brain Res Rev 28(1–2):118–135. PubMedCrossRefGoogle Scholar
  83. Minetti AE (1998) The biomechanics of skipping gaits a third locomotion paradigm? Proc Biol Sci 265(1402):1227–1235PubMedPubMedCentralCrossRefGoogle Scholar
  84. Minetti AE (2001) Invariant aspects of human locomotion in different gravitational environments. Acta Astronaut 49(3–10):191–198PubMedCrossRefGoogle Scholar
  85. Miyoshi T, Nozaki D, Sekiguchi H et al (2003) Somatosensory graviception inhibits soleus H-reflex during erect posture in humans as revealed by parabolic flight experiment. Exp Brain Res 150(1):109–113. PubMedCrossRefGoogle Scholar
  86. Mulavara AP, Ruttley T, Cohen HS et al (2012) Vestibular-somatosensory convergence in head movement control during locomotion after long-duration space flight. J Vestib Res 22(2):153–166. PubMedGoogle Scholar
  87. Nagai K, Yamada M, Uemura K et al (2011) Differences in muscle coactivation during postural control between healthy older and young adults. Arch Gerontol Geriatr 53(3):338–343. PubMedCrossRefGoogle Scholar
  88. Nakazawa K, Miyoshi T, Sekiguchi H et al (2004) Effects of loading and unloading of lower limb joints on the soleus H-reflex in standing humans. Clin Neurophysiol 115(6):1296–1304. PubMedCrossRefGoogle Scholar
  89. Nashner LM (1976) Adapting reflexes controlling the human posture. Exp Brain Res 26(1):59–72PubMedCrossRefGoogle Scholar
  90. Nashner LM (1977) Fixed patterns of rapid postural responses among leg muscles during stance. Exp Brain Res 30(1):13–24PubMedCrossRefGoogle Scholar
  91. Normand MC, Lagasse PP, Rouillard CA et al (1982) Modifications occurring in motor programs during learning of a complex task in man. Brain Res 241(1):87–93PubMedCrossRefGoogle Scholar
  92. Paige LD, Kama WN (1965) Effect of transient weightlessness on visual acuity. J Eng Psychol 4(2):33–44PubMedGoogle Scholar
  93. Paloski WH (1998) Vestibulospinal adaptation to microgravity. Otolaryngol Head Neck Surg 118(3 Pt 2):39–44. CrossRefGoogle Scholar
  94. Paloski WH, Reschke MF, Black FO et al (1992) Recovery of postural equilibrium control following spaceflight. Ann N Y Acad Sci 656:747–754PubMedCrossRefGoogle Scholar
  95. Paloski WH, Black FO, Reschke MF et al (1993) Vestibular ataxia following shuttle flights: effects of microgravity on otolith-mediated sensorimotor control of posture. Am J Otol 14(1):9–17PubMedGoogle Scholar
  96. Paloski WH, Reschke MF, Black FO (1999) Recovery of postural equilibrium control following space flight. In: Sawin CF (ed) Extended duration orbiter medical project. NASA Johnson Space Center, Houston, pp 5.4-1–5.5-16Google Scholar
  97. Pavei G, Minetti AE (2016) Hopping locomotion at different gravity metabolism and mechanics in humans. J Appl Physiol 120(10):1223–1229. PubMedCrossRefGoogle Scholar
  98. Pletser V, Winter J, Duclos F et al (2012) The first joint European partial-G parabolic flight campaign at Moon and Mars gravity levels for science and exploration. Microgravity Sci Technol 24(6):383–395. CrossRefGoogle Scholar
  99. Pöyhönen T, Avela J (2002) Effect of head-out water immersion on neuromuscular function of the plantarflexor muscles. Aviat Space Environ Med 73(12):1215–1218PubMedGoogle Scholar
  100. Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82(1):97–106PubMedCrossRefGoogle Scholar
  101. Pozzo T, Papaxanthis C, Stapley P et al (1998) The sensorimotor and cognitive integration of gravity. Brain Res Rev 28(1–2):92–101PubMedCrossRefGoogle Scholar
  102. Reschke MF, Anderson DJ, Homick J (1984) Vestibulospinal reflexes as a function of microgravity. Science 225(4658):212–214. PubMedCrossRefGoogle Scholar
  103. Reschke MF, Anderson DJ, Homick J (1986) Vestibulo-spinal response modification as determined with the H-reflex during the Spacelab-1 flight. Exp Brain Res 64(2):367–379. PubMedCrossRefGoogle Scholar
  104. Reschke MF, Bloomberg JJ, Paloski WH et al (1994) Physiologic adaptation to space flight: neurophysiologic aspects: sensory and sensory-motor function. In: Nicogossian AE, Leach CL, Pool SL (eds) Space physiology and medicine. Lea & Febiger, Philadelphia, pp 261–285Google Scholar
  105. Reschke MF, Bloomberg JJ, Harm DL et al (1998) Posture, locomotion, spatial orientation, and motion sickness as a function of space flight. Brain Res Rev 28(1–2):102–117PubMedCrossRefGoogle Scholar
  106. Ritzmann R, Freyler K, Weltin E et al (2015) Load dependency of postural control – kinematic and neuromuscular changes in response to over and under load conditions. PLoS One 10(6):e0128400. PubMedPubMedCentralCrossRefGoogle Scholar
  107. Ritzmann R, Freyler K, Krause A et al (2016) Bouncing on Mars and the Moon-the role of gravity on neuromuscular control: correlation of muscle activity and rate of force development. J Appl Physiol 121(5):1187–1195. PubMedCrossRefGoogle Scholar
  108. Roll JP, Popov K, Gurfinkel V et al (1993) Sensorimotor and perceptual function of muscle proprioception in microgravity. J Vestib Res 3(3):259–273PubMedGoogle Scholar
  109. Ruegg DG, Kakebeeke TH, Gabriel J-P et al (2003) Conduction velocity of nerve and muscle fiber action potentials after a space mission or a bed rest. Clin Neurophysiol 114(1):86–93PubMedCrossRefGoogle Scholar
  110. Solopova IA, Kazennikov OV, Deniskina NB et al (2003) Postural instability enhances motor responses to transcranial magnetic stimulation in humans. Neurosci Lett 337(1):25–28PubMedCrossRefGoogle Scholar
  111. Sousa ASP, Silva A, Tavares JMRS (2012) Biomechanical and neurophysiological mechanisms related to postural control and efficiency of movement: a review. Somatosens Mot Res 29(4):131–143. PubMedCrossRefGoogle Scholar
  112. Strzalkowski NDJ, Lowrey CR, Perry SD et al (2015) Selective weighting of cutaneous receptor feedback and associated balance impairments following short duration space flight. Neurosci Lett 592:94–98. PubMedCrossRefGoogle Scholar
  113. Taube W, Leukel C, Gollhofer A (2012) How neurons make us jump: the neural control of stretch-shortening cycle movements. Exerc Sport Sci Rev 40(2):106–115PubMedCrossRefGoogle Scholar
  114. Tokuno CD, Taube W, Cresswell AG (2009) An enhanced level of motor cortical excitability during the control of human standing. Acta Physiol (Oxf) 195(3):385–395PubMedCrossRefGoogle Scholar
  115. Uri JJ, Linder BJ, Moore TP et al (1989) Saccadic eye movements during space flight. NASA Tech Memo 100(475):1–9Google Scholar
  116. Vico L, Collet P, Guignandon A et al (2000) Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355(9215):1607–1611PubMedCrossRefGoogle Scholar
  117. Watt DG, Money KE, Tomi LM (1986) M.I.T./Canadian vestibular experiments on the Spacelab-1 mission: 3. Effects of prolonged weightlessness on a human otolith-spinal reflex. Exp Brain Res 64(2):308–315PubMedCrossRefGoogle Scholar
  118. Winter DA (2009) Biomechanics and motor control of human movement. Wiley, Hoboken, NJCrossRefGoogle Scholar
  119. Winter DA, Patla AE, Prince F et al (1998) Stiffness control of balance in quiet standing. J Neurophysiol 80(3):1211–1221PubMedGoogle Scholar
  120. Winter DA, Patla AE, Rietdyk S et al (2001) Ankle muscle stiffness in the control of balance during quiet standing. J Neurophysiol 85(6):2630–2633PubMedGoogle Scholar
  121. Young LR, Oman CM, Watt DG et al (1984) Spatial orientation in weightlessness and readaptation to earth’s gravity. Science 225(4658):205–208PubMedCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Sport Science, Institute of Sport and Sport ScienceUniversity of FreiburgFreiburgGermany

Personalised recommendations