Skip to main content

Soft Computing Based Technique for Optic Disc and Cup Detection in Digital Fundus Images

  • Conference paper
  • First Online:
VipIMAGE 2017 (ECCOMAS 2017)

Abstract

Cup-to-disc ratio is an important measure to diagnose glaucoma. This measure can be automatically computed from the segmentation of the optic disc and cup in eye-fundus image. In this paper, a novel segmentation algorithm based on Soft Computing techniques is presented. This theory is able to handle the imprecision and uncertainty present in the determination of the boundaries of these structures. The algorithm is composed of three main steps: vessel segmentation and removal, inpainting and optic disc and cup boundaries localisation. The preliminary results show the potential of this approach which obtains a visual accurate segmentation of both structures in the images of the DRIVE database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almazroa, A., Burman, R., Raahemifar, K., Lakshminarayanan, V.: Optic disc and optic cup segmentation methodologies for glaucoma image detection: a survey. J. Ophthalmol. 2015, 1–28 (2015). Article ID 180972

    Article  Google Scholar 

  2. Atherton, T., Kerbyson, D.: Size invariant circle detection. Image Vis. Comput. 17(11), 795–803 (1999)

    Article  Google Scholar 

  3. Baczyński, M., Jayaram, B.: Fuzzy implications. In: Studies in Fuzziness and Soft Computing, vol. 231. Springer (2008)

    Google Scholar 

  4. Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners, vol. 221. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  5. Bibiloni, P., González-Hidalgo, M., Massanet, S.: Retinal vessel detection based on fuzzy morphological line enhancement. In: Puerta, J., et al. (eds.) Advances in Artificial Intelligence: CAEPIA 2015, pp. 61–70. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  6. Bibiloni, P., González-Hidalgo, M., Massanet, S.: A real-time fuzzy morphological algorithm for retinal vessel segmentation. Submitted to Real-Time Image Processing (2017)

    Google Scholar 

  7. Bibiloni, P., González-Hidalgo, M., Massanet, S.: Skin hair removal in dermoscopic images using soft color morphology. In: ten Teije, A., Popow, C., Holmes, J., Sacchi, L. (eds.) Artificial Intelligence in Medicine, AIME 2017. LNCS, vol. 10259. Springer, Cham (2017)

    Google Scholar 

  8. Bibiloni, P., González-Hidalgo, M., Massanet, S.: Soft color morphology. In: 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, pp. 1–6 (2017)

    Google Scholar 

  9. Bloch, I.: Fuzzy sets for image processing and understanding. Fuzzy Sets Syst. 281, 280–291 (2015)

    Article  MathSciNet  Google Scholar 

  10. De Baets, B.: A fuzzy morphology: a logical approach. In: Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–67. Springer (1998)

    Google Scholar 

  11. González-Hidalgo, M., Massanet, S.: A fuzzy mathematical morphology based on discrete t-norms: fundamentals and applications to image processing. Soft Comput. 18(11), 2297–2311 (2014)

    Article  MATH  Google Scholar 

  12. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera D.: A fuzzy filter for high-density salt and pepper noise removal. In: Conference of the Spanish Association for Artificial Intelligence, pp. 70–79. Springer (2013)

    Google Scholar 

  13. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector. IEEE Trans. Fuzzy Syst. 23(4), 872–884 (2015)

    Article  Google Scholar 

  14. Judd, D.B., Wyszecki, G.: Color in Business, Science and Industry. Wiley, New York (1963)

    Google Scholar 

  15. Kerre, E.E., Nachtegael, M.: Fuzzy techniques in image processing. In: Studies in Fuzziness and Soft Computing, vol. 52. Springer (2000)

    Google Scholar 

  16. Lu, S.: Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans. Med. Imaging 30(12), 2126–2133 (2011)

    Article  Google Scholar 

  17. Mahfouz, A.E., Fahmy, A.S.: Ultrafast localization of the optic disc using dimensionality reduction of the search space. In: Yang, G.-Z., et al. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2009, Proceedings, Part II, pp. 985–992. Springer (2009)

    Google Scholar 

  18. Mantravadi, A.V., Vadhar, N.: Glaucoma. Prim. Care Clin. Off. Pract. 42(3), 437–449 (2015)

    Article  Google Scholar 

  19. Nicolela, M.T., Vianna, J.R.: Optic nerve: clinical examination. In: Giaconi, J.A., et al. (eds.) Pearls of Glaucoma Management, pp. 17–26. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  20. Pizer, S.M., Amburn, E.P., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graphics Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  21. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M., Van Ginneken, B., et al.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  22. Zheng, Y., Stambolian, D., O’Brien, J., Gee, J.C.: Optic disc and cup segmentation from color fundus photograph using graph cut with priors. In: Mori, K., et al. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2013, Proceedings, Part II, pp. 75–82. Springer (2013)

    Google Scholar 

Download references

Acknowledgments

The Spanish grant TIN 2016-75404-P AEI/FEDER, UE supported this work. P. Bibiloni also benefited from the fellowship FPI/1645/2014 of the Conselleria d’Educació, Cultura i Universitats of Govern de les Illes Balears under an operational program co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. González-Hidalgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bibiloni, P., González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D. (2018). Soft Computing Based Technique for Optic Disc and Cup Detection in Digital Fundus Images. In: Tavares, J., Natal Jorge, R. (eds) VipIMAGE 2017. ECCOMAS 2017. Lecture Notes in Computational Vision and Biomechanics, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-319-68195-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68195-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68194-8

  • Online ISBN: 978-3-319-68195-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics