Skip to main content

Pathogenesis and Management of Dyslipidemia in Obese Children

  • Chapter
  • First Online:
Pediatric Obesity

Part of the book series: Contemporary Endocrinology ((COE))

  • 2777 Accesses

Abstract

Combined dyslipidemia is a major component of the metabolic syndrome related to overweight and obesity in youth, is highly atherogenic, and is characterized by high triglyceride levels, low HDL-C levels, and increased numbers of small, dense LDL particles. These abnormalities are primarily driven by elevation in plasma free fatty acids derived from metabolically active visceral adipose tissue, particularly ectopic hepatic fat, resulting in increased hepatic triglyceride synthesis and overproduction of VLDL particles. Assessment of lipid abnormalities relies on a fasting lipid profile. A high non-HDL-C level together with high triglyceride:HDL-C ratio reliably identifies increased numbers of small, dense LDL particles. Reduction in adiposity through healthy lifestyle behavior change is the cornerstone of therapy, although dietary and physical activity interventions may have direct benefits independent of weight loss. Drug therapy may be required for those with severe lipid abnormalities and associated risk factors and risk conditions. Evidence-based research in many areas is lacking; the intersection of clinical care recommendations with the health care system has assumed increasing importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Raal FJ. Pathogenesis and management of the dyslipidemia of the metabolic syndrome. Metab Syndr Relat Disord. 2009;7:83–8.

    Article  CAS  PubMed  Google Scholar 

  2. Therond P. Catabolism of lipoproteins and metabolic syndrome. Curr Opin Clin Nutr Metab Care. 2009;12:366–71.

    Article  CAS  PubMed  Google Scholar 

  3. Meshkani R, Adeli K. Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clin Biochem. 2009;42:1331–46.

    Article  CAS  PubMed  Google Scholar 

  4. Aguilera CM, Gil-Campos M, Canete R, Gil A. Alterations in plasma and tissue lipids associated with obesity and metabolic syndrome. Clin Sci (Lond). 2008;114:183–93.

    Article  CAS  Google Scholar 

  5. Bremer AA, Mietus-Snyder M, Lustig RH. Toward a unifying hypothesis of metabolic syndrome. Pediatrics. 2012;129:557–70.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kavey RE. Combined dyslipidemia in childhood. J Clin Lipidol. 2015;9:S41–56.

    Article  PubMed  Google Scholar 

  7. Mudd JO, Borlaug BA, Johnston PV, Kral BG, Rouf R, Blumenthal RS, Kwiterovich PO Jr. Beyond low-density lipoprotein cholesterol: Defining the role of low-density lipoprotein heterogeneity in coronary artery disease. J Am Coll Cardiol. 2007;50:1735–41.

    Article  CAS  PubMed  Google Scholar 

  8. Adiels M, Olofsson SO, Taskinen MR, Boren J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler Thromb Vasc Biol. 2008;28:1225–36.

    Article  CAS  PubMed  Google Scholar 

  9. Mohd Nor NS, Lee S, Bacha F, Tfayli H, Arslanian S. Triglyceride glucose index as a surrogate measure of insulin sensitivity in obese adolescents with normoglycemia, prediabetes, and type 2 diabetes mellitus: comparison with the hyperinsulinemic-euglycemic clamp. Pediatr Diabetes. 2016;17:458–65.

    Article  CAS  PubMed  Google Scholar 

  10. Burns SF, Lee SJ, Arslanian SA. Surrogate lipid markers for small dense low-density lipoprotein particles in overweight youth. J Pediatr. 2012;161:991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary Report. Pediatrics. 2011;128(Suppl 5):S213–56.

    Google Scholar 

  12. Srinivasan SR, Frontini MG, Xu J, Berenson GS. Utility of childhood non-high-density lipoprotein cholesterol levels in predicting adult dyslipidemia and other cardiovascular risks: the bogalusa heart study. Pediatrics. 2006;118:201–6.

    Article  PubMed  Google Scholar 

  13. Li C, Ford ES, McBride PE, Kwiterovich PO, McCrindle BW, Gidding SS. Non-high-density lipoprotein cholesterol concentration is associated with the metabolic syndrome among us youth aged 12–19 years. J Pediatr. 2011;158:201–7.

    Article  CAS  PubMed  Google Scholar 

  14. Boekholdt SM, Arsenault BJ, Mora S, Pedersen TR, LaRosa JC, Nestel PJ, Simes RJ, Durrington P, Hitman GA, Welch KM, DeMicco DA, Zwinderman AH, Clearfield MB, Downs JR, Tonkin AM, Colhoun HM, Gotto AM Jr, Ridker PM, Kastelein JJ. Association of ldl cholesterol, non-hdl cholesterol, and apolipoprotein b levels with risk of cardiovascular events among patients treated with statins: a meta-analysis. JAMA. 2012;307:1302–9.

    Article  CAS  PubMed  Google Scholar 

  15. Pacifico L, Bonci E, Andreoli G, Romaggioli S, Di Miscio R, Lombardo CV, Chiesa C. Association of serum triglyceride-to-hdl cholesterol ratio with carotid artery intima-media thickness, insulin resistance and nonalcoholic fatty liver disease in children and adolescents. Nutr Metab Cardiovasc Dis. 2014;24:737–43.

    Article  CAS  PubMed  Google Scholar 

  16. Mietus-Snyder M, Drews KL, Otvos JD, Willi SM, Foster GD, Jago R, Buse JB, HEALTHY Study Group. Low-density lipoprotein cholesterol versus particle number in middle school children. J Pediatr. 2013;163:355–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. American Academy of Pediatrics. National cholesterol education program: report of the expert panel on blood cholesterol levels in children and adolescents. Pediatrics. 1992;89:525–84.

    Google Scholar 

  18. McCrindle BW, Urbina EM, Dennison BA, Jacobson MS, Steinberger J, Rocchini AP, Hayman LL, Daniels SR. Drug therapy of high-risk lipid abnormalities in children and adolescents: a scientific statement from the american heart association atherosclerosis, hypertension, and obesity in youth committee, council of cardiovascular disease in the young, with the council on cardiovascular nursing. Circulation. 2007;115:1948–67.

    Article  PubMed  Google Scholar 

  19. Daniels SR, Greer FR. Lipid screening and cardiovascular health in childhood. Pediatrics. 2008;122:198–208.

    Article  PubMed  Google Scholar 

  20. Gidding SS, Daniels SR, Kavey RE. Developing the 2011 integrated pediatric guidelines for cardiovascular risk reduction. Pediatrics. 2012;129:e1311–9.

    Article  PubMed  Google Scholar 

  21. Ritchie SK, Murphy EC, Ice C, Cottrell LA, Minor V, Elliott E, Neal W. Universal versus targeted blood cholesterol screening among youth: the cardiac project. Pediatrics. 2010;126:260–5.

    Article  PubMed  Google Scholar 

  22. Khoury M, Manlhiot C, Gibson D, Chahal N, Stearne K, Dobbin S, McCrindle BW. Universal screening for cardiovascular disease risk factors in adolescents to identify high-risk families: a population-based cross-sectional study. BMC Pediatr. 2016;16:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Wald DS, Bestwick JP, Morris JK, Whyte K, Jenkins L, Wald NJ. Child-parent familial hypercholesterolemia screening in primary care. N Engl J Med. 2016;375:1628–37.

    Article  CAS  PubMed  Google Scholar 

  24. McCrindle BW, Gidding SS. What should be the screening strategy for familial hypercholesterolemia? N Engl J Med. 2016;375:1685–6.

    Article  PubMed  Google Scholar 

  25. McCrindle BW, Kwiterovich PO, McBride PE, Daniels SR, Kavey RE. Guidelines for lipid screening in children and adolescents: bringing evidence to the debate. Pediatrics. 2012;130:353–6.

    Article  PubMed  Google Scholar 

  26. Khoury M, Manlhiot C, Dobbin S, Gibson D, Chahal N, Wong H, Davies J, Stearne K, Fisher A, McCrindle BW. Role of waist measures in characterizing the lipid and blood pressure assessment of adolescents classified by body mass index. Arch Pediatr Adolesc Med. 2012;166:719–24.

    Article  PubMed  Google Scholar 

  27. Khoury M, Manlhiot C, McCrindle BW. Role of the waist/height ratio in the cardiometabolic risk assessment of children classified by body mass index. J Am Coll Cardiol. 2013;62:742–51.

    Article  PubMed  Google Scholar 

  28. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    CAS  PubMed  Google Scholar 

  29. Tighe DA, Ockene IS, Reed G, Nicolosi R. Calculated low density lipoprotein cholesterol levels frequently underestimate directly measured low density lipoprotein cholesterol determinations in patients with serum triglyceride levels < or =4.52 mmol/L: an analysis comparing the lipidirect magnetic ldl assay with the friedewald calculation. Clin Chim Acta. 2006;365:236–42.

    Article  CAS  PubMed  Google Scholar 

  30. Nordestgaard BG, Langsted A, Mora S, Kolovou G, Baum H, Bruckert E, Watts GF, Sypniewska G, Wiklund O, Boren J, Chapman MJ, Cobbaert C, Descamps OS, von Eckardstein A, Kamstrup PR, Pulkki K, Kronenberg F, Remaley AT, Rifai N, Ros E, Langlois M. Fasting is not routinely required for determination of a lipid profile: clinical and laboratory implications including flagging at desirable concentration cut-points-a joint consensus statement from the european atherosclerosis society and european federation of clinical chemistry and laboratory medicine. Eur Heart J. 2016;37:1944–58.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Anderson LN, Maguire JL, Lebovic G, Hanley AJ, Hamilton J, Adeli K, McCrindle BW, Borkhoff CM, Parkin PC, Birken CS. Duration of fasting, serum lipids, and metabolic profile in early childhood. J Pediatr. 2017;180:47–52e41.

    Article  CAS  PubMed  Google Scholar 

  32. Bairaktari ET, Seferiadis KI, Elisaf MS. Evaluation of methods for the measurement of low-density lipoprotein cholesterol. J Cardiovasc Pharmacol Ther. 2005;10:45–54.

    Article  CAS  PubMed  Google Scholar 

  33. Caulfield MP, Li S, Lee G, Blanche PJ, Salameh WA, Benner WH, Reitz RE, Krauss RM. Direct determination of lipoprotein particle sizes and concentrations by ion mobility analysis. Clin Chem. 2008;54:1307–16.

    Article  CAS  PubMed  Google Scholar 

  34. Petersen M, Dyrby M, Toubro S, Engelsen SB, Norgaard L, Pedersen HT, Dyerberg J. Quantification of lipoprotein subclasses by proton nuclear magnetic resonance-based partial least-squares regression models. Clin Chem. 2005;51:1457–61.

    Article  CAS  PubMed  Google Scholar 

  35. Okazaki M, Usui S, Fukui A, Kubota I, Tomoike H. Component analysis of hplc profiles of unique lipoprotein subclass cholesterols for detection of coronary artery disease. Clin Chem. 2006;52:2049–53.

    Article  CAS  PubMed  Google Scholar 

  36. Freedman DS, Bowman BA, Otvos JD, Srinivasan SR, Berenson GS. Levels and correlates of ldl and vldl particle sizes among children: the bogalusa heart study. Atherosclerosis. 2000;152:441–9.

    Article  CAS  PubMed  Google Scholar 

  37. Srinivasan SR, Segrest JP, Elkasabany AM, Berenson GS. Distribution and correlates of lipoproteins and their subclasses in black and white young adults. The bogalusa heart study. Atherosclerosis. 2001;159:391–7.

    Article  CAS  PubMed  Google Scholar 

  38. Otvos JD, Jeyarajah EJ, Cromwell WC. Measurement issues related to lipoprotein heterogeneity. Am J Cardiol. 2002;90:22i–9i.

    Article  CAS  PubMed  Google Scholar 

  39. Freedman DS, Bowman BA, Otvos JD, Srinivasan SR, Berenson GS. Differences in the relation of obesity to serum triacylglycerol and vldl subclass concentrations between black and white children: the bogalusa heart study. Am J Clin Nutr. 2002;75:827–33.

    CAS  PubMed  Google Scholar 

  40. Srinivasan SR, Myers L, Berenson GS. Distribution and correlates of non-high-density lipoprotein cholesterol in children: the bogalusa heart study. Pediatrics. 2002;110:e29.

    Article  PubMed  Google Scholar 

  41. Christensen B, Glueck C, Kwiterovich P, Degroot I, Chase G, Heiss G, Mowery R, Tamir I, Rifkind B. Plasma cholesterol and triglyceride distributions in 13,665 children and adolescents: the prevalence study of the lipid research clinics program. Pediatr Res. 1980;14:194–202.

    Article  CAS  PubMed  Google Scholar 

  42. Beaglehole R, Trost DC, Tamir I, Kwiterovich P, Glueck CJ, Insull W, Christensen B. Plasma high-density lipoprotein cholesterol in children and young adults. The lipid research clinics program prevalence study. Circulation. 1980;62:IV83–92.

    CAS  PubMed  Google Scholar 

  43. Tamir I, Heiss G, Glueck CJ, Christensen B, Kwiterovich P, Rifkind BM. Lipid and lipoprotein distributions in white children ages 6–19 yr. The lipid research clinics program prevalence study. J Chronic Dis. 1981;34:27–39.

    Article  CAS  PubMed  Google Scholar 

  44. National Cholesterol Education Program (NCEP). Highlights of the report of the expert panel on blood cholesterol levels in children and adolescents. Pediatrics. 1992;89:495–501.

    Google Scholar 

  45. Jolliffe CJ, Janssen I. Distribution of lipoproteins by age and gender in adolescents. Circulation. 2006;114:1056–62.

    Article  CAS  PubMed  Google Scholar 

  46. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–421.

    Google Scholar 

  47. Magnussen CG, Raitakari OT, Thomson R, Juonala M, Patel DA, Viikari JS, Marniemi J, Srinivasan SR, Berenson GS, Dwyer T, Venn A. Utility of currently recommended pediatric dyslipidemia classifications in predicting dyslipidemia in adulthood: evidence from the Childhood Determinants of Adult Health (CDAH) Study, Cardiovascular Risk in Young Finns Study, and Bogalusa Heart Study. Circulation. 2008;117:32–42.

    Article  PubMed  Google Scholar 

  48. Srinivasan SR, Wattigney W, Webber LS, Berenson GS. Race and gender differences in serum lipoproteins of children, adolescents, and young adults—emergence of an adverse lipoprotein pattern in white males: the bogalusa heart study. Prev Med. 1991;20:671–84.

    Article  CAS  PubMed  Google Scholar 

  49. Chen W, Srinivasan SR, Bao W, Wattigney WA, Berenson GS. Sibling aggregation of low- and high-density lipoprotein cholesterol and apolipoproteins b and a-i levels in black and white children: the bogalusa heart study. Ethn Dis. 1997;7:241–9.

    CAS  PubMed  Google Scholar 

  50. Freedman DS, Cresanta JL, Srinivasan SR, Webber LS, Berenson GS. Longitudinal serum lipoprotein changes in white males during adolescence: the bogalusa heart study. Metabolism. 1985;34:396–403.

    Article  CAS  PubMed  Google Scholar 

  51. Berenson GS. Bogalusa heart study: a long-term community study of a rural biracial (black/white) population. AmJMedSci. 2001;322:293–300.

    CAS  Google Scholar 

  52. Li S, Chen W, Srinivasan SR, Bond MG, Tang R, Urbina EM, Berenson GS. Childhood cardiovascular risk factors and carotid vascular changes in adulthood: the bogalusa heart study. JAMA. 2003;290:2271–6.

    Article  CAS  PubMed  Google Scholar 

  53. Berenson GS, Srinivasan SR, Bao W, Newman WP III, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The bogalusa heart study. N Engl J Med. 1998;338:1650–6.

    Article  CAS  PubMed  Google Scholar 

  54. Clarke WR, Schrott HG, Leaverton PE, Connor WE, Lauer RM. Tracking of blood lipids and blood pressures in school age children: the muscatine study. Circulation. 1978;58:626–34.

    Article  CAS  PubMed  Google Scholar 

  55. Freedman DS, Shear CL, Srinivasan SR, Webber LS, Berenson GS. Tracking of serum lipids and lipoproteins in children over an 8-year period: the bogalusa heart study. Prev Med. 1985;14:203–16.

    Article  CAS  PubMed  Google Scholar 

  56. Porkka KV, Viikari JS, Taimela S, Dahl M, Akerblom HK. Tracking and predictiveness of serum lipid and lipoprotein measurements in childhood: a 12-year follow-up. The cardiovascular risk in young finns study. Am J Epidemiol. 1994;140:1096–110.

    Article  CAS  PubMed  Google Scholar 

  57. Newman WP III, Freedman DS, Voors AW, Gard PD, Srinivasan SR, Cresanta JL, Williamson GD, Webber LS, Berenson GS. Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The bogalusa heart study. N Engl J Med. 1986;314:138–44.

    Article  PubMed  Google Scholar 

  58. Gidding SS, Rana JS, Prendergast C, McGill H, Carr JJ, Liu K, Colangelo LA, Loria CM, Lima J, Terry JG, Reis JP, McMahan CA. Pathobiological determinants of atherosclerosis in youth (pday) risk score in young adults predicts coronary artery and abdominal aorta calcium in middle age: the cardia study. Circulation. 2016;133:139–46.

    Article  PubMed  Google Scholar 

  59. Magnussen CG, Cheriyan S, Sabin MA, Juonala M, Koskinen J, Thomson R, Skilton MR, Kahonen M, Laitinen T, Taittonen L, Hutri-Kahonen N, Viikari JS, Raitakari OT. Continuous and dichotomous metabolic syndrome definitions in youth predict adult type 2 diabetes and carotid artery intima media thickness: the cardiovascular risk in young finns study. J Pediatr. 2016;171:97–103.e1–3.

    Article  PubMed  Google Scholar 

  60. Koskinen J, Magnussen CG, Sabin MA, Kahonen M, Hutri-Kahonen N, Laitinen T, Taittonen L, Jokinen E, Lehtimaki T, Viikari JS, Raitakari OT, Juonala M. Youth overweight and metabolic disturbances in predicting carotid intima-media thickness, type 2 diabetes, and metabolic syndrome in adulthood: the cardiovascular risk in young finns study. Diabetes Care. 2014;37:1870–7.

    Article  CAS  PubMed  Google Scholar 

  61. Shah AS, Urbina EM, Khoury PR, Kimball TR, Dolan LM. Lipids and lipoprotein ratios: Contribution to carotid intima media thickness in adolescents and young adults with type 2 diabetes mellitus. J Clin Lipidol. 2013;7:441–5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Urbina EM, Khoury PR, McCoy CE, Dolan LM, Daniels SR, Kimball TR. Triglyceride to hdl-c ratio and increased arterial stiffness in children, adolescents, and young adults. Pediatrics. 2013;131:e1082–90.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Shah AS, Davidson WS, Gao Z, Dolan LM, Kimball TR, Urbina EM. Superiority of lipoprotein particle number to detect associations with arterial thickness and stiffness in obese youth with and without prediabetes. J Clin Lipidol. 2016;10:610–8.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gooding HC, Shay CM, Ning H, Gillman MW, Chiuve SE, Reis JP, Allen NB, Lloyd-Jones DM. Optimal lifestyle components in young adulthood are associated with maintaining the ideal cardiovascular health profile into middle age. J Am Heart Assoc. 2015;4 PubMed (PMID: 26514160).

    Google Scholar 

  65. Battista M, Murray RD, Daniels SR. Use of the metabolic syndrome in pediatrics: a blessing and a curse. Semin Pediatr Surg. 2009;18:136–43.

    Article  PubMed  Google Scholar 

  66. Steinberger J, Daniels SR, Eckel RH, Hayman L, Lustig RH, McCrindle B, Mietus-Snyder ML. Progress and challenges in metabolic syndrome in children and adolescents: a scientific statement from the american heart association atherosclerosis, hypertension, and obesity in the young committee of the council on cardiovascular disease in the young; council on cardiovascular nursing; and council on nutrition, physical activity, and metabolism. Circulation. 2009;119:628–47.

    Article  PubMed  Google Scholar 

  67. Morrison JA, Ford ES, Steinberger J. The pediatric metabolic syndrome. Minerva Med. 2008;99:269–87.

    CAS  PubMed  Google Scholar 

  68. Skinner AC, Mayer ML, Flower K, Perrin EM, Weinberger M. Using BMI to determine cardiovascular risk in childhood: How do the BMI cutoffs fare? Pediatrics. 2009;124:e905–12.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents. Findings from the third national health and nutrition examination survey, 1988–1994. Arch Pediatr Adolesc Med. 2003;157:821–7.

    Article  PubMed  Google Scholar 

  70. Cook S, Auinger P, Li C, Ford ES. Metabolic syndrome rates in united states adolescents, from the national health and nutrition examination survey, 1999–2002. J Pediatr. 2008;152:165–70.

    Article  PubMed  Google Scholar 

  71. Agudelo GM, Bedoya G, Estrada A, Patino FA, Munoz AM, Velasquez CM. Variations in the prevalence of metabolic syndrome in adolescents according to different criteria used for diagnosis: Which definition should be chosen for this age group? Metab Syndr Relat Disord. 2014;12:202–9.

    Article  CAS  PubMed  Google Scholar 

  72. Reinehr T, de Sousa G, Toschke AM, Andler W. Comparison of metabolic syndrome prevalence using eight different definitions: a critical approach. Arch Dis Child. 2007;92:1067–72.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mancini MC. Metabolic syndrome in children and adolescents—criteria for diagnosis. Diabetol Metab Syndr. 2009;1:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. de Ferranti SD, Gauvreau K, Ludwig DS, Neufeld EJ, Newburger JW, Rifai N. Prevalence of the metabolic syndrome in american adolescents: findings from the third national health and nutrition examination survey. Circulation. 2004;110:2494–7.

    Article  PubMed  Google Scholar 

  75. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison J, Sherwin RS, Caprio S. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med. 2004;350:2362–74.

    Article  CAS  PubMed  Google Scholar 

  76. Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, Wong G, Bennett P, Shaw J, Caprio S. The metabolic syndrome in children and adolescents. Lancet. 2007;369:2059–61.

    Article  PubMed  Google Scholar 

  77. Frontini MG, Srinivasan SR, JH X, Tang R, Bond MG, Berenson G. Utility of non-high-density lipoprotein cholesterol versus other lipoprotein measures in detecting subclinical atherosclerosis in young adults (the bogalusa heart study). Am J Cardiol. 2007;100:64–8.

    Article  CAS  PubMed  Google Scholar 

  78. Liu J, Joshi D, Sempos CT. Non-high-density-lipoprotein cholesterol and cardiovascular risk factors among adolescents with and without impaired fasting glucose. Appl Physiol Nutr Metab. 2009;34:136–42.

    Article  PubMed  CAS  Google Scholar 

  79. Liu J, Wade TJ, Tan H. Cardiovascular risk factors and anthropometric measurements of adolescent body composition: a cross-sectional analysis of the third national health and nutrition examination survey. Int J Obes. 2007;31:59–64.

    Article  CAS  Google Scholar 

  80. McCrindle BW. The contribution of anthropometry, adiposity, and adiposopathy to cardiometabolic disturbances in obese youth. J Pediatr. 2014;165:1083–4.

    Article  PubMed  Google Scholar 

  81. Kelishadi R, Mirmoghtadaee P, Najafi H, Keikha M. Systematic review on the association of abdominal obesity in children and adolescents with cardio-metabolic risk factors. J Res Med Sci. 2015;20:294–307.

    PubMed  PubMed Central  Google Scholar 

  82. Lo K, Wong M, Khalechelvam P, Tam W. Waist-to-height ratio, body mass index and waist circumference for screening paediatric cardio-metabolic risk factors: a meta-analysis. Obes Rev. 2016;17:1258–75.

    Article  CAS  PubMed  Google Scholar 

  83. Conceicao-Machado ME, Silva LR, Santana ML, Pinto EJ, Silva Rde C, Moraes LT, Couto RD, Assis AM. Hypertriglyceridemic waist phenotype: association with metabolic abnormalities in adolescents. J Pediatr. 2013;89:56–63.

    Article  Google Scholar 

  84. Hobkirk JP, King RF, Gately P, Pemberton P, Smith A, Barth JH, Harman N, Davies I, Carroll S. The predictive ability of triglycerides and waist (hypertriglyceridemic waist) in assessing metabolic triad change in obese children and adolescents. Metab Syndr Relat Disord. 2013;11:336–42.

    Article  CAS  PubMed  Google Scholar 

  85. Miller S, Manlhiot C, Chahal N, Cullen-Dean G, Bannister L, McCrindle BW. Impact of increasing adiposity in hyperlipidemic children. Clin Pediatr (Phila). 2008;47:679–84.

    Article  Google Scholar 

  86. Thavendiranathan P, Jones E, Han RK, Cullen-Dean G, Helden E, Conner WT, McCrindle BW. Association between physical activity, adiposity, and lipid abnormalities in children with familial hyperlipidemia. Eur J Cardiovasc Prev Rehabil. 2007;14:59–64.

    Article  PubMed  Google Scholar 

  87. Manlhiot C, Larsson P, Gurofsky RC, Smith RW, Fillingham C, Clarizia NA, Chahal N, Clarke JT, McCrindle BW. Spectrum and management of hypertriglyceridemia among children in clinical practice. Pediatrics. 2009;123:458–65.

    Article  PubMed  Google Scholar 

  88. Naukkarinen J, Ehnholm C, Peltonen L. Genetics of familial combined hyperlipidemia. Curr Opin Lipidol. 2006;17:285–90.

    Article  CAS  PubMed  Google Scholar 

  89. Suviolahti E, Lilja HE, Pajukanta P. Unraveling the complex genetics of familial combined hyperlipidemia. Ann Med. 2006;38:337–51.

    Article  CAS  PubMed  Google Scholar 

  90. Wierzbicki AS, Graham CA, Young IS, Nicholls DP. Familial combined hyperlipidaemia: under—defined and under—diagnosed? Curr Vasc Pharmacol. 2008;6:13–22.

    Article  CAS  PubMed  Google Scholar 

  91. Brahm AJ, Hegele RA. Combined hyperlipidemia: Familial but not (usually) monogenic. Curr Opin Lipidol. 2016;27:131–40.

    Article  CAS  PubMed  Google Scholar 

  92. van Greevenbroek MM, Stalenhoef AF, de Graaf J, Brouwers MC. Familial combined hyperlipidemia: from molecular insights to tailored therapy. Curr Opin Lipidol. 2014;25:176–82.

    Article  PubMed  CAS  Google Scholar 

  93. Gaddi A, Cicero AF, Odoo FO, Poli AA, Paoletti R. Practical guidelines for familial combined hyperlipidemia diagnosis: an up-date. Vasc Health Risk Manag. 2007;3:877–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Juonala M, Viikari JS, Ronnemaa T, Marniemi J, Jula A, Loo BM, Raitakari OT. Associations of dyslipidemias from childhood to adulthood with carotid intima-media thickness, elasticity, and brachial flow-mediated dilatation in adulthood: the cardiovascular risk in young finns study. Arterioscler Thromb Vasc Biol. 2008;28:1012–7.

    Article  CAS  PubMed  Google Scholar 

  95. ter Avest E, Sniderman AD, Bredie SJ, Wiegman A, Stalenhoef AF, de Graaf J. Effect of aging and obesity on the expression of dyslipidaemia in children from families with familial combined hyperlipidaemia. Clin Sci (Lond). 2007;112:131–9.

    Article  CAS  Google Scholar 

  96. Smelt AH, de Beer F. Apolipoprotein E and familial dysbetalipoproteinemia: clinical, biochemical, and genetic aspects. Semin Vasc Med. 2004;4:249–57.

    Article  CAS  PubMed  Google Scholar 

  97. Koopal C, Marais AD, Visseren FL. Familial dysbetalipoproteinemia: an underdiagnosed lipid disorder. Curr Opin Endocrinol Diabetes Obes. 2017 Apr;24(2):133–9.

    Article  CAS  PubMed  Google Scholar 

  98. Ramasamy I. Update on the molecular biology of dyslipidemias. Clin Chim Acta. 2016;454:143–85.

    Article  CAS  PubMed  Google Scholar 

  99. Kavey RE, Allada V, Daniels SR, Hayman LL, McCrindle BW, Newburger JW, Parekh RS, Steinberger J. Cardiovascular risk reduction in high-risk pediatric patients: a scientific statement from the American Heart Association Expert Panel on Population and Prevention Science; the Councils on Cardiovascular Disease in the Young, Epidemiology and Prevention, Nutrition, Physical Activity and Metabolism, High Blood Pressure Research, Cardiovascular Nursing, and the Kidney in Heart Disease; and the Interdisciplinary Working Group on Quality of Care and Outcomes Research: endorsed by the American Academy of Pediatrics. Circulation. 2006;114:2710–38.

    Article  PubMed  Google Scholar 

  100. Efficacy and safety of lowering dietary intake of fat and cholesterol in children with elevated low-density lipoprotein cholesterol. The dietary intervention study in children (disc). The writing group for the disc collaborative research group. JAMA. 1995;273:1429–35.

    Article  Google Scholar 

  101. Obarzanek E, Kimm SY, Barton BA, Van Horn LL, Kwiterovich PO Jr, Simons-Morton DG, Hunsberger SA, Lasser NL, Robson AM, Franklin FA Jr, Lauer RM, Stevens VJ, Friedman LA, Dorgan JF, Greenlick MR. Long-term safety and efficacy of a cholesterol-lowering diet in children with elevated low-density lipoprotein cholesterol: seven-year results of the dietary intervention study in children (disc). Pediatrics. 2001;107:256–64.

    Article  CAS  PubMed  Google Scholar 

  102. Rask-Nissila L, Jokinen E, Ronnemaa T, Viikari J, Tammi A, Niinikoski H, Seppanen R, Tuominen J, Simell O. Prospective, randomized, infancy-onset trial of the effects of a low-saturated-fat, low-cholesterol diet on serum lipids and lipoproteins before school age: the special turku coronary risk factor intervention project (strip). Circulation. 2000;102:1477–83.

    Article  CAS  PubMed  Google Scholar 

  103. Kaitosaari T, Ronnemaa T, Raitakari O, Talvia S, Kallio K, Volanen I, Leino A, Jokinen E, Valimaki I, Viikari J, Simell O. Effect of 7-year infancy-onset dietary intervention on serum lipoproteins and lipoprotein subclasses in healthy children in the prospective, randomized special turku coronary risk factor intervention project for children (strip) study. Circulation. 2003;108:672–7.

    Article  CAS  PubMed  Google Scholar 

  104. Oranta O, Pahkala K, Ruottinen S, Niinikoski H, Lagstrom H, Viikari JS, Jula A, Loo BM, Simell O, Ronnemaa T, Raitakari OT. Infancy-onset dietary counseling of low-saturated-fat diet improves insulin sensitivity in healthy adolescents 15–20 years of age: The special turku coronary risk factor intervention project (strip) study. Diabetes Care. 2013;36:2952–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nupponen M, Pahkala K, Juonala M, Magnussen CG, Niinikoski H, Ronnemaa T, Viikari JS, Saarinen M, Lagstrom H, Jula A, Simell O, Raitakari OT. Metabolic syndrome from adolescence to early adulthood: effect of infancy-onset dietary counseling of low saturated fat: the special turku coronary risk factor intervention project (strip). Circulation. 2015;131:605–13.

    Article  CAS  PubMed  Google Scholar 

  106. Pahkala K, Hietalampi H, Laitinen TT, Viikari JS, Ronnemaa T, Niinikoski H, Lagstrom H, Talvia S, Jula A, Heinonen OJ, Juonala M, Simell O, Raitakari OT. Ideal cardiovascular health in adolescence: effect of lifestyle intervention and association with vascular intima-media thickness and elasticity (the special turku coronary risk factor intervention project for children [strip] study). Circulation. 2013;127:2088–96.

    Article  PubMed  Google Scholar 

  107. Davis JN, Alexander KE, Ventura EE, Kelly LA, Lane CJ, Byrd-Williams CE, Toledo-Corral CM, Roberts CK, Spruijt-Metz D, Weigensberg MJ, Goran MI. Associations of dietary sugar and glycemic index with adiposity and insulin dynamics in overweight latino youth. Am J Clin Nutr. 2007;86:1331–8.

    CAS  PubMed  Google Scholar 

  108. Aeberli I, Zimmermann MB, Molinari L, Lehmann R, I’Allemand D, Spinas GA, Berneis K. Fructose intake is a predictor of LDL particle size in overweight schoolchildren. Am J Clin Nutr. 2007;86:1174–8.

    CAS  PubMed  Google Scholar 

  109. Lee AK, Binongo JN, Chowdhury R, Stein AD, Gazmararian JA, Vos MB, Welsh JA. Consumption of less than 10% of total energy from added sugars is associated with increasing HDL in females during adolescence: a longitudinal analysis. J Am Heart Assoc. 2014;3:e000615.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, Gerszten RE, Clish CB, Mootha VK, Grinspoon SK, Fleischman A. Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes. 2013;8:52–61.

    Article  CAS  PubMed  Google Scholar 

  111. Newbern D, Gumus Balikcioglu P, Balikcioglu M, Bain J, Muehlbauer M, Stevens R, Ilkayeva O, Dolinsky D, Armstrong S, Irizarry K, Freemark M. Sex differences in biomarkers associated with insulin resistance in obese adolescents: metabolomic profiling and principal components analysis. J Clin Endocrinol Metab. 2014;99:4730–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dorfman SE, Laurent D, Gounarides JS, Li X, Mullarkey TL, Rocheford EC, Sari-Sarraf F, Hirsch EA, Hughes TE, Commerford SR. Metabolic implications of dietary trans-fatty acids. Obesity (Silver Spring). 2009;17:1200–7.

    Article  CAS  Google Scholar 

  113. Slining MM, Popkin BM. Trends in intakes and sources of solid fats and added sugars among U.S. Children and adolescents: 1994–2010. Pediatr Obes. 2013;8:307–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kit BK, Kuklina E, Carroll MD, Ostchega Y, Freedman DS, Ogden CL. Prevalence of and trends in dyslipidemia and blood pressure among us children and adolescents, 1999–2012. JAMA Pediatr. 2015;169:272–9.

    Article  PubMed  Google Scholar 

  115. Kit BK, Carroll MD, Lacher DA, Sorlie PD, DeJesus JM, Ogden C. Trends in serum lipids among us youths aged 6 to 19 years, 1988–2010. JAMA. 2012;308:591–600.

    Article  CAS  PubMed  Google Scholar 

  116. Widhalm K, Brazda G, Schneider B, Kohl S. Effect of soy protein diet versus standard low fat, low cholesterol diet on lipid and lipoprotein levels in children with familial or polygenic hypercholesterolemia. JPediatr. 1993;123:30–4.

    Article  CAS  Google Scholar 

  117. Laurin D, Jacques H, Moorjani S, Steinke FH, Gagne C, Brun D, Lupien PJ. Effects of a soy-protein beverage on plasma lipoproteins in children with familial hypercholesterolemia. Am J Clin Nutr. 1991;54:98–103.

    Article  CAS  PubMed  Google Scholar 

  118. Safavi M, Farajian S, Kelishadi R, Mirlohi M, Hashemipour M. The effects of synbiotic supplementation on some cardio-metabolic risk factors in overweight and obese children: a randomized triple-masked controlled trial. Int J Food Sci Nutr. 2013;64:687–93.

    Article  CAS  PubMed  Google Scholar 

  119. Gulesserian T, Widhalm K. Effect of a rapeseed oil substituting diet on serum lipids and lipoproteins in children and adolescents with familial hypercholesterolemia. J Am Coll Nutr. 2002;21:103–8.

    Article  CAS  PubMed  Google Scholar 

  120. Wong H, Chahal N, Manlhiot C, Niedra E, McCrindle BW. Flaxseed in pediatric hyperlipidemia: a placebo-controlled, blinded, randomized clinical trial of dietary flaxseed supplementation for children and adolescents with hypercholesterolemia. JAMA Pediatr. 2013;167:708–13.

    Article  PubMed  Google Scholar 

  121. Engler MM, Engler MB, Malloy MJ, Chiu EY, Schloetter MC, Paul SM, Stuehlinger M, Lin KY, Cooke JP, Morrow JD, Ridker PM, Rifai N, Miller E, Witztum JL, Mietus-Snyder M. Antioxidant vitamins c and e improve endothelial function in children with hyperlipidemia: endothelial assessment of risk from lipids in youth (early) trial. Circulation. 2003;108:1059–63.

    Article  CAS  PubMed  Google Scholar 

  122. Mietus-Snyder M, Malloy MJ. Endothelial dysfunction occurs in children with two genetic hyperlipidemias: improvement with antioxidant vitamin therapy. J Pediatr. 1998;133:35–40.

    Article  CAS  PubMed  Google Scholar 

  123. Engler MM, Engler MB, Malloy M, Chiu E, Besio D, Paul S, Stuehlinger M, Morrow J, Ridker P, Rifai N, Mietus-Snyder M. Docosahexaenoic acid restores endothelial function in children with hyperlipidemia: results from the early study. Int J Clin Pharmacol Ther. 2004;42:672–9.

    Article  CAS  PubMed  Google Scholar 

  124. Ketomaki AM, Gylling H, Antikainen M, Siimes MA, Miettinen TA. Red cell and plasma plant sterols are related during consumption of plant stanol and sterol ester spreads in children with hypercholesterolemia. J Pediatr. 2003;142:524–31.

    Article  CAS  PubMed  Google Scholar 

  125. Amundsen AL, Ose L, Nenseter MS, Ntanios FY. Plant sterol ester-enriched spread lowers plasma total and ldl cholesterol in children with familial hypercholesterolemia. Am J Clin Nutr. 2002;76:338–44.

    CAS  PubMed  Google Scholar 

  126. Gylling H, Siimes MA, Miettinen TA. Sitostanol ester margarine in dietary treatment of children with familial hypercholesterolemia. J Lipid Res. 1995;36:1807–12.

    CAS  PubMed  Google Scholar 

  127. de Jongh S, Vissers MN, Rol P, Bakker HD, Kastelein JJ, Stroes ES. Plant sterols lower ldl cholesterol without improving endothelial function in prepubertal children with familial hypercholesterolaemia. J Inherit Metab Dis. 2003;26:343–51.

    Article  PubMed  Google Scholar 

  128. Jakulj L, Vissers MN, Rodenburg J, Wiegman A, Trip MD, Kastelein JJ. Plant stanols do not restore endothelial function in pre-pubertal children with familial hypercholesterolemia despite reduction of low-density lipoprotein cholesterol levels. J Pediatr. 2006;148:495–500.

    Article  CAS  PubMed  Google Scholar 

  129. Dennison BA, Levine DM. Randomized, double-blind, placebo-controlled, two-period crossover clinical trial of psyllium fiber in children with hypercholesterolemia. J Pediatr. 1993;123:24–9.

    Article  CAS  PubMed  Google Scholar 

  130. Davidson MH, Dugan LD, Burns JH, Sugimoto D, Story K, Drennan K. A psyllium-enriched cereal for the treatment of hypercholesterolemia in children: a controlled, double-blind, crossover study. Am J Clin Nutr. 1996;63:96–102.

    Article  CAS  PubMed  Google Scholar 

  131. Goldberg RB, Sabharwal AK. Fish oil in the treatment of dyslipidemia. Curr Opin Endocrinol Diabetes Obes. 2008;15:167–74.

    Article  CAS  PubMed  Google Scholar 

  132. Chen LH, Wang YF, Xu QH, Chen SS. Omega-3 fatty acids as a treatment for non-alcoholic fatty liver disease in children: a systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2016;23. [Epub ahead of print]

    Google Scholar 

  133. Gidding SS, Prospero C, Hossain J, Zappalla F, Balagopal PB, Falkner B, Kwiterovich P. A double-blind randomized trial of fish oil to lower triglycerides and improve cardiometabolic risk in adolescents. J Pediatr. 2014;165:497–503.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. de Ferranti SD, Milliren CE, Denhoff ER, Steltz SK, Selamet Tierney ES, Feldman HA, Osganian SK. Using high-dose omega-3 fatty acid supplements to lower triglyceride levels in 10- to 19-year-olds. Clin Pediatr (Phila). 2014;53:428–38.

    Article  Google Scholar 

  135. Chahal N, Manlhiot C, Wong H, McCrindle BW. Effectiveness of omega-3 polysaturated fatty acids (fish oil) supplementation for treating hypertriglyceridemia in children and adolescents. Clin Pediatr (Phila). 2014;53:645–51.

    Article  Google Scholar 

  136. McCrindle BW, Helden E, Conner WT. Garlic extract therapy in children with hypercholesterolemia. Arch Pediatr Adolesc Med. 1998;152:1089–94.

    Article  CAS  PubMed  Google Scholar 

  137. Wells GD, Noseworthy MD, Hamilton J, Tarnopolski M, Tein I. Skeletal muscle metabolic dysfunction in obesity and metabolic syndrome. Can J Neurol Sci. 2008;35:31–40.

    Article  PubMed  Google Scholar 

  138. Fleischman A, Kron M, Systrom DM, Hrovat M, Grinspoon SK. Mitochondrial function and insulin resistance in overweight and normal-weight children. J Clin Endocrinol Metab. 2009;94:4923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nascimento H, Costa E, Rocha S, Lucena C, Rocha-Pereira P, Rego C, Mansilha HF, Quintanilha A, Aires L, Mota J, Santos-Silva A, Belo L. Adiponectin and markers of metabolic syndrome in obese children and adolescents: impact of 8-mo regular physical exercise program. Pediatr Res. 2014;76:159–65.

    Article  CAS  PubMed  Google Scholar 

  140. Lee S, Burns SF, White D, Kuk JL, Arslanian S. Effects of acute exercise on postprandial triglyceride response after a high-fat meal in overweight black and white adolescents. Int J Obes. 2013;37:966–71.

    Article  CAS  Google Scholar 

  141. Zorba E, Cengiz T, Karacabey K. Exercise training improves body composition, blood lipid profile and serum insulin levels in obese children. J Sports Med Phys Fitness. 2011;51:664–9.

    CAS  PubMed  Google Scholar 

  142. Kang HS, Gutin B, Barbeau P, Owens S, Lemmon CR, Allison J, Litaker MS, Le NA. Physical training improves insulin resistance syndrome markers in obese adolescents. Med Sci Sports Exerc. 2002;34:1920–7.

    Article  CAS  PubMed  Google Scholar 

  143. Craig SB, Bandini LG, Lichtenstein AH, Schaefer EJ, Dietz WH. The impact of physical activity on lipids, lipoproteins, and blood pressure in preadolescent girls. Pediatrics. 1996;98:389–95.

    CAS  PubMed  Google Scholar 

  144. Tolfrey K, Campbell IG, Batterham AM. Exercise training induced alterations in prepubertal children’s lipid-lipoprotein profile. Med Sci Sports Exerc. 1998;30:1684–92.

    Article  CAS  PubMed  Google Scholar 

  145. Fripp RR, Hodgson JL. Effect of resistive training on plasma lipid and lipoprotein levels in male adolescents. J Pediatr. 1987;111:926–31.

    Article  CAS  PubMed  Google Scholar 

  146. Woo KS, Chook P, CW Y, Sung RY, Qiao M, Leung SS, Lam CW, Metreweli C, Celermajer DS. Effects of diet and exercise on obesity-related vascular dysfunction in children. Circulation. 2004;109:1981–6.

    Article  PubMed  Google Scholar 

  147. Watts K, Beye P, Siafarikas A, O’Driscoll G, Jones TW, Davis EA, Green DJ. Effects of exercise training on vascular function in obese children. J Pediatr. 2004;144:620–5.

    Article  PubMed  Google Scholar 

  148. Kim Y, Lee S. Physical activity and abdominal obesity in youth. Appl Physiol Nutr Metab. 2009;34:571–81.

    Article  PubMed  Google Scholar 

  149. Inge TH, Courcoulas AP, Jenkins TM, Michalsky MP, Helmrath MA, Brandt ML, Harmon CM, Zeller MH, Chen MK, Xanthakos SA, Horlick M, Buncher CR. Weight loss and health status 3 years after bariatric surgery in adolescents. N Engl J Med. 2016;374:113–23.

    Article  CAS  PubMed  Google Scholar 

  150. Tonstad S, Knudtzon J, Sivertsen M, Refsum H, Ose L. Efficacy and safety of cholestyramine therapy in peripubertal and prepubertal children with familial hypercholesterolemia. J Pediatr. 1996;129:42–9.

    Article  CAS  PubMed  Google Scholar 

  151. McCrindle BW, O’Neill MB, Cullen-Dean G, Helden E. Acceptability and compliance with two forms of cholestyramine in the treatment of hypercholesterolemia in children: a randomized, crossover trial. J Pediatr. 1997;130:266–73.

    Article  CAS  PubMed  Google Scholar 

  152. Tonstad S, Sivertsen M, Aksnes L, Ose L. Low dose colestipol in adolescents with familial hypercholesterolaemia. Arch Dis Child. 1996;74:157–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. McCrindle BW, Helden E, Cullen-Dean G, Conner WT. A randomized crossover trial of combination pharmacologic therapy in children with familial hyperlipidemia. PediatrRes. 2002;51:715–21.

    CAS  Google Scholar 

  154. Stein EA, Marais AD, Szamosi T, Raal FJ, Schurr D, Urbina EM, Hopkins PN, Karki S, Xu J, Misir S, Melino M. Colesevelam hydrochloride: efficacy and safety in pediatric subjects with heterozygous familial hypercholesterolemia. J Pediatr. 2010;156(2):231–6.e1–3.

    Article  CAS  PubMed  Google Scholar 

  155. Yeste D, Chacon P, Clemente M, Albisu MA, Gussinye M, Carrascosa A. Ezetimibe as monotherapy in the treatment of hypercholesterolemia in children and adolescents. J Pediatr Endocrinol Metab. 2009;22:487–92.

    Article  CAS  PubMed  Google Scholar 

  156. Clauss S, Wai KM, Kavey RE, Kuehl K. Ezetimibe treatment of pediatric patients with hypercholesterolemia. J Pediatr. 2009;154:869–72.

    Article  CAS  PubMed  Google Scholar 

  157. Kusters DM, Caceres M, Coll M, Cuffie C, Gagne C, Jacobson MS, Kwiterovich PO, Lee R, Lowe RS, Massaad R, McCrindle BW, Musliner TA, Triscari J, Kastelein JJ. Efficacy and safety of ezetimibe monotherapy in children with heterozygous familial or nonfamilial hypercholesterolemia. J Pediatr. 2015;166:1377–1384.e1–3.

    Article  CAS  PubMed  Google Scholar 

  158. van der Graaf A, Nierman MC, Firth JC, Wolmarans KH, Marais AD, de GE. Efficacy and safety of fluvastatin in children and adolescents with heterozygous familial hypercholesterolaemia. Acta Paediatr. 2006;95:1461–6.

    Article  PubMed  Google Scholar 

  159. Lambert M, Lupien PJ, Gagne C, Levy E, Blaichman S, Langlois S, Hayden M, Rose V, Clarke JT, Wolfe BM, Clarson C, Parsons H, Stephure DK, Potvin D, Lambert J. Treatment of familial hypercholesterolemia in children and adolescents: effect of lovastatin. Canadian Lovastatin in Children Study Group. Pediatrics. 1996;97:619–28.

    CAS  PubMed  Google Scholar 

  160. Stein EA, Illingworth DR, Kwiterovich PO Jr, Liacouras CA, Siimes MA, Jacobson MS, Brewster TG, Hopkins P, Davidson M, Graham K, Arensman F, Knopp RH, DuJovne C, Williams CL, Isaacsohn JL, Jacobsen CA, Laskarzewski PM, Ames S, Gormley GJ. Efficacy and safety of lovastatin in adolescent males with heterozygous familial hypercholesterolemia: a randomized controlled trial. JAMA. 1999;281:137–44.

    Article  CAS  PubMed  Google Scholar 

  161. Clauss SB, Holmes KW, Hopkins P, Stein E, Cho M, Tate A, Johnson-Levonas AO, Kwiterovich PO. Efficacy and safety of lovastatin therapy in adolescent girls with heterozygous familial hypercholesterolemia. Pediatrics. 2005;116:682–8.

    Article  PubMed  Google Scholar 

  162. Knipscheer HC, Boelen CC, Kastelein JJ, van Diermen DE, Groenemeijer BE, van den Ende A, Buller HR, Bakker HD. Short-term efficacy and safety of pravastatin in 72 children with familial hypercholesterolemia. Pediatr Res. 1996;39:867–71.

    Article  CAS  PubMed  Google Scholar 

  163. Wiegman A, Hutten BA, de Groot E, Rodenburg J, Bakker HD, Buller HR, Sijbrands EJ, Kastelein JJ. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized controlled trial. JAMA. 2004;292:331–7.

    Article  CAS  PubMed  Google Scholar 

  164. Rodenburg J, Vissers MN, Wiegman A, van Trotsenburg AS, van der Graaf A, de Groot E, Wijburg FA, Kastelein JJ, Hutten BA. Statin treatment in children with familial hypercholesterolemia: the younger, the better. Circulation. 2007;116:664–8.

    Article  CAS  PubMed  Google Scholar 

  165. de Jongh S, Ose L, Szamosi T, Gagne C, Lambert M, Scott R, Perron P, Dobbelaere D, Saborio M, Tuohy MB, Stepanavage M, Sapre A, Gumbiner B, Mercuri M, van Trotsenburg AS, Bakker HD, Kastelein JJ. Efficacy and safety of statin therapy in children with familial hypercholesterolemia: a randomized, double-blind, placebo-controlled trial with simvastatin. Circulation. 2002;106:2231–7.

    Article  PubMed  Google Scholar 

  166. de Jongh S, Lilien MR, op’t Roodt J, Stroes ES, Bakker HD, Kastelein JJ. Early statin therapy restores endothelial function in children with familial hypercholesterolemia. J Am Coll Cardiol. 2002;40:2117–21.

    Article  PubMed  Google Scholar 

  167. McCrindle BW, Ose L, Marais AD. Efficacy and safety of atorvastatin in children and adolescents with familial hypercholesterolemia or severe hyperlipidemia: a multicenter, randomized, placebo-controlled trial. J Pediatr. 2003;143:74–80.

    Article  CAS  PubMed  Google Scholar 

  168. Avis HJ, Hutten BA, Gagne C, Langslet G, McCrindle BW, Wiegman A, Hsia J, Kastelein JJ, Stein EA. Efficacy and safety of rosuvastatin therapy for children with familial hypercholesterolemia. J Am Coll Cardiol. 2010;55:1121–6.

    Article  CAS  PubMed  Google Scholar 

  169. Braamskamp MJ, Langslet G, McCrindle BW, Cassiman D, Francis GA, Gagne C, Gaudet D, Morrison KM, Wiegman A, Turner T, Kusters DM, Miller E, Raichlen JS, Wissmar J, Martin PD, Stein EA, Kastelein JJ. Efficacy and safety of rosuvastatin therapy in children and adolescents with familial hypercholesterolemia: results from the charon study. J Clin Lipidol. 2015;9:741–50.

    Article  PubMed  Google Scholar 

  170. Harada-Shiba M, Arisaka O, Ohtake A, Okada T, Suganami H. Efficacy and safety of pitavastatin in japanese male children with familial hypercholesterolemia. J Atheroscler Thromb. 2016;23:48–55.

    Article  CAS  PubMed  Google Scholar 

  171. Braamskamp MJ, Stefanutti C, Langslet G, Drogari E, Wiegman A, Hounslow N, Kastelein JJ. Efficacy and safety of pitavastatin in children and adolescents at high future cardiovascular risk. J Pediatr. 2015;167:338–43.e5.

    Article  CAS  PubMed  Google Scholar 

  172. Colletti RB, Neufeld EJ, Roff NK, McAuliffe TL, Baker AL, Newburger JW. Niacin treatment of hypercholesterolemia in children. Pediatrics. 1993;92:78–82.

    CAS  PubMed  Google Scholar 

  173. Wheeler KA, West RJ, Lloyd JK, Barley J. Double blind trial of bezafibrate in familial hypercholesterolaemia. Arch Dis Child. 1985;60:34–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. van der Graaf A, Cuffie-Jackson C, Vissers MN, Trip MD, Gagne C, Shi G, Veltri E, Avis HJ, Kastelein JJ. Efficacy and safety of coadministration of ezetimibe and simvastatin in adolescents with heterozygous familial hypercholesterolemia. J Am Coll Cardiol. 2008;52:1421–9.

    Article  PubMed  CAS  Google Scholar 

  175. Kusters DM, Avis HJ, de Groot E, Wijburg FA, Kastelein JJ, Wiegman A, Hutten BA. Ten-year follow-up after initiation of statin therapy in children with familial hypercholesterolemia. JAMA. 2014;312:1055–7.

    Article  PubMed  CAS  Google Scholar 

  176. Langslet G, Bogsrud MP, Halvorsen I, Fjeldstad H, Retterstol K, Veierod MB, Ose L. Long-term follow-up of young adults with familial hypercholesterolemia after participation in clinical trials during childhood. J Clin Lipidol. 2015;9:778–85.

    Article  PubMed  Google Scholar 

  177. Avis HJ, Vissers MN, Stein EA, Wijburg FA, Trip MD, Kastelein JJ, Hutten BA. A systematic review and meta-analysis of statin therapy in children with familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2007;27:1803–10.

    Article  CAS  PubMed  Google Scholar 

  178. Bahadir MA, Oguz A, Uzunlulu M, Bahadir O. Effects of different statin treatments on small dense low-density lipoprotein in patients with metabolic syndrome. J Atheroscler Thromb. 2009;16:684–90.

    Article  CAS  PubMed  Google Scholar 

  179. Chapman MJ. Pitavastatin: novel effects on lipid parameters. Atheroscler Suppl. 2011;12:277–84.

    Article  CAS  PubMed  Google Scholar 

  180. Daido H, Horikawa Y, Takeda J. The effects of pitavastatin on glucose metabolism in patients with type 2 diabetes with hypercholesterolemia. Diabetes Res Clin Pract. 2014;106:531–7.

    Article  CAS  PubMed  Google Scholar 

  181. Mita T, Nakayama S, Abe H, Gosho M, Iida H, Hirose T, Kawamori R, Watada H. Comparison of effects of pitavastatin and atorvastatin on glucose metabolism in type 2 diabetic patients with hypercholesterolemia. J Diabetes Investig. 2013;4:297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Jacobson TA, Zimmerman FH. Fibrates in combination with statins in the management of dyslipidemia. J Clin Hypertens (Greenwich). 2006;8:35–41; quiz 42–33.

    Article  CAS  Google Scholar 

  183. Kennedy MJ, Jellerson KD, Snow MZ, Zacchetti ML. Challenges in the pharmacologic management of obesity and secondary dyslipidemia in children and adolescents. Paediatr Drugs. 2013;15:335–42.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Smalley CM, Goldberg SJ. A pilot study in the efficacy and safety of gemfibrozil in a pediatric population. J Clin Lipidol. 2008;2:106–11.

    Article  PubMed  Google Scholar 

  185. McCrindle BW, Tyrrell PN, Kavey RE. Will obesity increase the proportion of children and adolescents recommended for a statin? Circulation. 2013;128:2162–5.

    Article  PubMed  Google Scholar 

  186. Reinehr T, Wiegand S, Siegfried W, Keller KM, Widhalm K, l’Allemand D, Zwiauer K, Holl RW. Comorbidities in overweight children and adolescents: do we treat them effectively? Int J Obes. 2013;37:493–9.

    Article  CAS  Google Scholar 

  187. Lasky T. Statin use in children in the United States. Pediatrics. 2008;122:1406–8; author reply 1408.

    Article  PubMed  Google Scholar 

  188. Jones KL, Arslanian S, Peterokova VA, Park JS, Tomlinson MJ. Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial. Diabetes Care. 2002;25:89–94.

    Article  CAS  PubMed  Google Scholar 

  189. Freemark M, Bursey D. The effects of metformin on body mass index and glucose tolerance in obese adolescents with fasting hyperinsulinemia and a family history of type 2 diabetes. Pediatrics. 2001;107:E55.

    Article  CAS  PubMed  Google Scholar 

  190. Clarson CL, Mahmud FH, Baker JE, Clark HE, McKay WM, Schauteet VD, Hill DJ. Metformin in combination with structured lifestyle intervention improved body mass index in obese adolescents, but did not improve insulin resistance. Endocrine. 2009;36:141–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian W. McCrindle MD, MPH .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

McCrindle, B.W. (2018). Pathogenesis and Management of Dyslipidemia in Obese Children. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_25

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics