Skip to main content

Obesity and the Endocrine System, Part II: The Effects of Childhood Obesity on Growth and Bone Maturation, Thyroid and Adrenal Function, Sexual Development, and Bone Mineralization

  • Chapter
  • First Online:
Book cover Pediatric Obesity

Part of the book series: Contemporary Endocrinology ((COE))

Abstract

The storage of excess body fat has profound effects on intermediary metabolism and endocrine function. Here, I review the effects of obesity on linear growth and bone maturation, thyroid function, sexual development, adrenal function, calcium homeostasis, and bone mineralization. Subsequent chapters in this volume discuss the implications of obesity for insulin production and action and the regulation of glucose tolerance, blood pressure, lipid metabolism, atherogenesis, sleep hygiene, and hepatic, renal, and neurologic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Douyon L, Schteingart DE. Effect of obesity and starvation on thyroid hormone, growth hormone and cortisol secretion. Endocrinol Metab Clin N Am. 2002;31:173–89.

    Article  CAS  Google Scholar 

  2. Wabitsch M, Heinze E, Debatin KM, Blum WF. IGF-I- and IGFBP-3-expression in cultured human preadipocytes and adipocytes. Horm Metab Res. 2000;32:555–9.

    Article  CAS  PubMed  Google Scholar 

  3. Peter MA, Winterhalter KH, Boni-Schnetzler M, Froesch ER, Zapf J. Regulation of insulin-like growth factor-I (IGF-I) and IGF-binding proteins by growth hormone in rat white adipose tissue. Endocrinology. 1993;133:2624–31.

    Article  CAS  PubMed  Google Scholar 

  4. Kratzsch J, Dehmel B, Pulzer F, et al. Increased serum GHBP levels in obese pubertal children and adolescents: relationship to body composition, leptin and indicators of metabolic disturbances. Int J Obes. 1997;21:1130–6.

    Article  CAS  Google Scholar 

  5. Gleeson HK, Lissett CA, Shalet SM. Insulin-like growth factor-I response to a single bolus of growth hormone is increased in obesity. J Clin Endocrinol Metab. 2005;90:1061–7.

    Article  CAS  PubMed  Google Scholar 

  6. Wabitsch M, Blum WF, Muche R, Heinze E, Haug C, Mayer H, Teller W. Insulin-like growth factors and their binding proteins before and after weight loss and their associations with hormonal and metabolic parameters in obese adolescent girls. Int J Obes Relat Metab Disord. 1996;20(12):1073–80.

    CAS  PubMed  Google Scholar 

  7. Wheatcroft SB, Kearney MT. IGF-dependent and IGF-independent actions of IGF-binding protein-1 and -2: implications for metabolic homeostasis. Trends Endocrinol Metab. 2009;20:153–62.

    Article  CAS  PubMed  Google Scholar 

  8. Nam SY, Lee EJ, Kim KR, Cha BS, Song YD, Lim SK, Lee HC, Huh KB. Effect of obesity on total and free insulin-like growth factor (IGF)-1, and their relationship to IGF-binding protein (BP)-1, IGFBP-2, IGFBP-3, insulin, and growth hormone. Int J Obes Relat Metab Disord. 1997;21(5):355–9.

    Article  CAS  PubMed  Google Scholar 

  9. Saitoh H, Kamoda T, Nakahara S, Hirano T, Nakamura N. Serum concentrations of insulin, insulin-like growth factor(IGF)-I, IGF binding protein (IGFBP)-1 and -3 and growth hormone binding protein in obese children: fasting IGFBP-1 is suppressed in normoinsulinaemic obese children. Clin Endocrinol. 1998;48(4):487–92.

    Article  CAS  Google Scholar 

  10. Kotronen A, Lewitt M, Hall K, Brismar K, Yki-Jarvinen H. Insulin-like growth factor binding protein 1 as a novel specific marker of hepatic insulin sensitivity. J Clin Endocrinol Metab. 2008;93:4867–72.

    Article  CAS  PubMed  Google Scholar 

  11. Ballerini MG, Ropelato MG, Domené HM, Pennisi P, Heinrich JJ, Jasper HG. Differential impact of simple childhood obesity on the components of the growth hormone-insulin-like growth factor (IGF)-IGF binding proteins axis. J Pediatr Endocrinol Metab. 2004;17(5):749–57.

    Article  CAS  PubMed  Google Scholar 

  12. Hoeflich A, Russo VC. Physiology and pathophysiology of IGFBP-1 and IGFBP-2 - consensus and dissent on metabolic control and malignant potential. Best Pract Res Clin Endocrinol Metab. 2015;29(5):685–700.

    Article  CAS  PubMed  Google Scholar 

  13. Frystyk J, Skjaerbaek C, Vestbo E, Fisker S, Orskov H. Circulating levels of free insulin-like growth factors in obese subjects: the impact of type 2 diabetes. Diabetes Metab Res Rev. 1999;15:314–22.

    Article  CAS  PubMed  Google Scholar 

  14. Rasmussen MH, Juul A, Kjems LL, Hilsted J. Effects of short-term caloric restriction on circulating free IGF-I, acid-labile subunit, IGF-binding proteins (IGFBPs)-1-4, and IGFBPs-1-3 protease activity in obese subjects. Eur J Endocrinol. 2006;155(4):575–81.

    Article  CAS  PubMed  Google Scholar 

  15. Frystyk J, Brick DJ, Gerweck AV, Utz AL, Miller KK. Bioactive insulin-liike growth factor-1 in obesity. J Clin Endocrinol Metab. 2009;94:3093–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elis S, Wu Y, Courtland HW, Cannata D, Sun H, Beth-On M, Liu C, Jasper H, Domené H, Karabatas L, Guida C, Basta-Pljakic J, Cardoso L, Rosen CJ, Frystyk J, Yakar S. Unbound (bioavailable) IGF1 enhances somatic growth. Dis Model Mech. 2011;4(5):649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rajkumar K, Modric T, Murphy LJ. Impaired adipogenesis in insulin-like growth factor binding protein-1 transgenic mice. J Endocrinol. 1999;162(3):457–65.

    Article  CAS  PubMed  Google Scholar 

  18. Wheatcroft SB, Kearney MT, Shah AM, Ezzat VA, Miell JR, Modo M, Williams SC, Cawthorn WP, Medina-Gomez G, Vidal-Puig A, Sethi JK, Crossey PA. IGF-binding protein-2 protects against the development of obesity and insulin resistance. Diabetes. 2007;56(2):285–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cirmanova V, Bayer M, Starka L, Zajickova K. The effect of leptin on bone: an evolving concept of action. Physiol Res. 2008;57(Suppl 1):S143–51.

    CAS  PubMed  Google Scholar 

  20. Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92:73–8.

    Article  CAS  PubMed  Google Scholar 

  21. Maor G, Rochwerger M, Segev Y, Phillip M. Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. J Bone Miner Res. 2002;17:1034–43.

    Article  CAS  PubMed  Google Scholar 

  22. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ, Sewter CP, Digby JE, Mohammed SN, Hurst JA, Cheetham CH, Earley AR, Barnett AH, Prins JB, O’Rahilly S. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature. 1997;387(6636):903–8.

    Article  CAS  PubMed  Google Scholar 

  23. Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, Lank E, Bottomley B, Lopez-Fernandez J, Ferraz-Amaro I, Dattani MT, Ercan O, Myhre AG, Retterstol L, Stanhope R, Edge JA, McKenzie S, Lessan N, Ghodsi M, De Rosa V, Perna F, Fontana S, Barroso I, Undlien DE, O’Rahilly S. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med. 2007;356(3):237–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor PN, Richmond R, Davies N, Sayers A, Stevenson K, Woltersdorf W, Taylor A, Groom A, Northstone K, Ring S, Okosieme O, Rees A, Nitsch D, Williams GR, Smith GD, Gregory JW, Timpson NJ, Tobias JH, Dayan CM. Paradoxical relationship between body mass index and thyroid hormone levels: a study using mendelian randomization. J Clin Endocrinol Metab. 2016;101(2):730–8.

    Article  CAS  PubMed  Google Scholar 

  25. Santini F, Marzullo P, Rotondi M, Ceccarini G, Pagano L, Ippolito S, Chiovato L, Biondi B. Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. Eur J Endocrinol. 2014;171(4):R137–52.

    Article  CAS  PubMed  Google Scholar 

  26. Lombardi A, Moreno M, de Lange P, Iossa S, Busiello RA, Goglia F. Regulation of skeletal muscle mitochondrial activity by thyroid hormones: focus on the “old” triiodothyronine and the “emerging” 3,5-diiodothyronine. Front Physiol. 2015;6:237.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Feldt-Rasmussen U. Thyroid and leptin. Thyroid. 2007;17(5):413–9.

    Article  CAS  PubMed  Google Scholar 

  28. Hollenberg AN. The role of the thyrotropin-releasing hormone (TRH) neuron as a metabolic sensor. Thyroid. 2008;18:131–8.

    Article  CAS  PubMed  Google Scholar 

  29. Ortega FJ, Jílková ZM, Moreno-Navarrete JM, Pavelka S, Rodriguez-Hermosa JI, Kopeck Ygrave J, Fernández-Real JM. Type I iodothyronine 5′-deiodinase mRNA and activity is increased in adipose tissue of obese subjects. Int J Obes. 2012;36(2):320–4.

    Article  CAS  Google Scholar 

  30. Boelen A, van Beeren M, Vos X, Surovtseva O, Belegri E, Saaltink DJ, Vreugdenhil E, Kalsbeek A, Kwakkel J, Fliers E. Leptin administration restores the fasting-induced increase of hepatic type 3 deiodinase expression in mice. Thyroid. 2012;22(2):192–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lee JM, Appugliese D, Kaciroti N, Corwyn RF, Bradley RH, Lumeng JC. Weight status in young girls and the onset of puberty. Pediatrics. 2007;119:e624–30.

    Article  PubMed  Google Scholar 

  32. Roelfsema F, Kok P, Veldhuis JD, Pijl H. Altered multihormone synchrony in obese patients with polycystic ovary syndrome. Metabolism. 2011;60(9):1227–33.

    Article  CAS  PubMed  Google Scholar 

  33. Witchel SF, Tena-Sempere M. The Kiss1 system and polycystic ovary syndrome: lessons from physiology and putative pathophysiologic implications. Fertil Steril. 2013;100(1):12–22.

    Article  CAS  PubMed  Google Scholar 

  34. Sam S, Dunaif A. Polycystic ovary syndrome: syndrome XX? Trends Endocrinol Metab. 2003;14:365–70.

    Article  CAS  PubMed  Google Scholar 

  35. Chang RJ. The reproductive phenotype in polycystic ovary syndrome. Nat Clin Pract Endocrinol Metab. 2007;3(10):688–95.

    Article  CAS  PubMed  Google Scholar 

  36. Freemark M. Management of adolescents with polycystic ovary syndrome. J Clin Endocrinol Metab. 2011;96(11):3354–6.

    Article  CAS  PubMed  Google Scholar 

  37. Mogri M, Dhindsa S, Quattrin T, Ghanim H, Dandona P. Testosterone concentrations in young pubertal and post-pubertal obese males. Clin Endocrinol. 2013;78(4):593–9.

    Article  CAS  Google Scholar 

  38. Kelly DM, Jones TH. Testosterone and obesity. Obes Rev. 2015;16(7):581–606.

    Article  CAS  PubMed  Google Scholar 

  39. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, Hermo L, Suarez S, Roth BL, Ducy P, Karsenty G. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5):796–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chirico V, Cannavò S, Lacquaniti A, Salpietro V, Mandolfino M, Romeo PD, Cotta O, Munafò C, Giorgianni G, Salpietro C, Arrigo T. Prolactin in obese children: a bridge between inflammation and metabolic-endocrine dysfunction. Clin Endocrinol. 2013;79(4):537–44.

    Article  CAS  Google Scholar 

  41. Colao A, Sarno AD, Cappabianca P, Briganti F, Pivonello R, Somma CD, Faggiano A, Biondi B, Lombardi G. Gender differences in the prevalence, clinical features and response to cabergoline in hyperprolactinemia. Eur J Endocrinol. 2003;148(3):325–31.

    Article  CAS  PubMed  Google Scholar 

  42. Gillam MP, Molitch ME, Lombardi G, Colao A. Advances in the treatment of prolactinomas. Endocr Rev. 2006;27:485–534.

    Article  CAS  PubMed  Google Scholar 

  43. Nanbu-Wakao R, Fujitani Y, Masuho Y, Muramatu M, Wakao H. Prolactin enhances CCAAT enhancer-binding protein-beta (C/EBP beta) and peroxisome proliferator-activated receptor gamma (PPAR gamma) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells. Mol Endocrinol. 2000;14(2):307–16.

    CAS  PubMed  Google Scholar 

  44. Fleenor D, Arumugam R, Freemark M. Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I. Horm Res. 2006;66(3):101–10.

    CAS  PubMed  Google Scholar 

  45. Ben-Jonathan N, Hugo E. Prolactin (PRL) in adipose tissue: regulation and functions. Adv Exp Med Biol. 2015;846:1–35.

    Article  CAS  PubMed  Google Scholar 

  46. Perez Millan MI, Luque Guillermina M, Ramirez MC, Noain D, Ornstein AM, Rubinstein M, Becu-Villalobos D. Selective disruption of dopamine D2 receptors in pituitary lactotropes 2 increases body weight and adiposity in female mice. Endocrinology. 2014;155:829–39.

    Article  PubMed  Google Scholar 

  47. García MC, López M, Gualillo O, Seoane LM, Diéguez C, Señarís RM. Hypothalamic levels of NPY, MCH, and prepro-orexin mRNA during pregnancy and lactation in the rat: role of prolactin. FASEB J. 2003;17:1392–400.

    Article  PubMed  Google Scholar 

  48. Augustine RA, Grattan DR. Induction of central leptin resistance in hyperphagic pseudopregnant rats by chronic prolactin infusion. Endocrinology. 2008;149(3):1049–55.

    Article  CAS  PubMed  Google Scholar 

  49. Nagaishi VS, Cardinali LI, Zampieri TT, Furigo IC, Metzger M, Donato J Jr. Possible crosstalk between leptin and prolactin during pregnancy. Neuroscience. 2014;259:71–83.

    Article  CAS  PubMed  Google Scholar 

  50. Sonigo C, Bouilly J, Carré N, Tolle V, Caraty A, Tello J, Simony-Conesa FJ, Millar R, Young J, Binart N. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J Clin Invest. 2012;122(10):3791–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Artz E, Haqq A, Freemark M. Hormonal and metabolic consequences of childhood obesity. Endocrinol Metab Clin N Am. 2005;34(3):643–58.

    Article  CAS  Google Scholar 

  52. Lee MJ, Pramyothin P, Karastergiou K, Fried SK. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta. 2014;1842(3):473–81.

    Article  CAS  PubMed  Google Scholar 

  53. Wake DJ, Rask E, Livingstone DEW, Soderberg S, Olsson T, Walker BR. Local and systemic impact of transcriptional up-regulation of 11β-hydroxysteroid dehydrogenase type 1 in adipose tissue in human obesity. J Clin Endocrinol Metab. 2003;88(8):3983.

    Article  CAS  PubMed  Google Scholar 

  54. Tomlinson JW, Moore JS, Clark PM, Holder G, Shakespeare L, Stewart PM. Weight loss increases 11β-hydroxysteroid dehydrogenase type 1 expression in human adipose tissue. J Clin Endocrinol Metab. 2004;89:2711–6.

    Article  CAS  PubMed  Google Scholar 

  55. Ashraf A, Alvarez J, Saenz K, Gower B, McCormick K, Franklin F. Threshold for effects of vitamin D deficiency on glucose metabolism in obese female African-American adolescents. J Clin Endocrinol Metab. 2009;94:3200–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Alemzadeh R, Kichler J, Babar G, Calhoun M. Hypovitaminosis D in obese children and adolescents: relationship with adiposity, insulin sensitivity, ethnicity, and season. Metabolism. 2008;57:183–91.

    Article  CAS  PubMed  Google Scholar 

  57. Lenders CM, Feldman HA, Von Scheven E, et al. Relation of body fat indexes to vitamin D status and deficiency among obese adolescents. Am J Clin Nutr. 2009;90:459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wortsman J, Matsuoka LY, Chen TC, Lu Z, Holick MF. Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr. 2000;72(3):690–3.

    CAS  PubMed  Google Scholar 

  59. Miraglia del Giudice E, Grandone A, Cirillo G, Capristo C, Marzuillo P, Di Sessa A, Umano GR, Ruggiero L, Perrone L. Bioavailable vitamin D in obese children: the role of insulin resistance. J Clin Endocrinol Metab. 2015;100(10):3949–55.

    Article  CAS  PubMed  Google Scholar 

  60. Powe CE, Evans MK, Wenger J, Zonderman AB, Berg AH, Nalls M, Tamez H, Zhang D, Bhan I, Karumanchi SA, Powe NR, Thadhani R. Vitamin D-binding protein and vitamin D status of black Americans and white Americans. N Engl J Med. 2013;369(21):1991–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ashraf AP, Huisingh C, Alvarez JA, Wang X, Gower BA. Insulin resistance indices are inversely associated with vitamin D binding protein concentrations. J Clin Endocrinol Metab. 2014;99(1):178–83.

    Article  CAS  PubMed  Google Scholar 

  62. Jamka M, Woźniewicz M, Jeszka J, Mardas M, Bogdański P, Stelmach-Mardas M. The effect of vitamin D supplementation on insulin and glucose metabolism in overweight and obese individuals: systematic review with meta-analysis. Sci Rep. 2015;5:16142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chandler PD, Wang L, Zhang X, Sesso HD, Moorthy MV, Obi O, Lewis J, Prince RL, Danik JS, Manson JE, LeBoff MS, Song Y. Effect of vitamin D supplementation alone or with calcium on adiposity measures: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2015;73(9):577–93.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pathak K, Soares MJ, Calton EK, Zhao Y, Hallett J. Vitamin D supplementation and body weight status: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2014;15(6):528–37.

    Article  CAS  PubMed  Google Scholar 

  65. Greco EA, Lenzi A, Migliaccio S. The obesity of bone. Ther Adv Endocrinol Metab. 2015;6(6):273–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pollock NK. Childhood obesity, bone development, and cardiometabolic risk factors. Mol Cell Endocrinol. 2015;410:52–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pollock NK, Bernard PJ, Wenger K, Misra S, Gower BA, Allison JD, Zhu H, Davis CL. Lower bone mass in prepubertal overweight children with prediabetes. J Bone Miner Res. 2010;25(12):2760–9.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kessler J, Koebnick C, Smith N, Adams A. Childhood obesity is associated with increased risk of most lower extremity fractures. Clin Orthop Relat Res. 2013;471(4):1199–207.

    Article  PubMed  Google Scholar 

  69. Sabhaney V, Boutis K, Yang G, Barra L, Tripathi R, Tran TT, Doan Q. Bone fractures in children: is there an association with obesity? J Pediatr. 2014;165(2):313–8.

    Article  PubMed  Google Scholar 

  70. Ionova-Martin SS, Do SH, Barth HD, et al. Reduced size-independent mechanical properties of cortical bone in high fat diet-induced obesity. Bone. 2010;46(1):217–25.

    Article  CAS  PubMed  Google Scholar 

  71. Zeyda M, Gollinger K, Todoric J, Kiefer FW, Keck M, Aszmann O, Prager G, Zlabinger GJ, Petzelbauer P, Stulnig TM. Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology. 2011;152(6):2219–27.

    Article  CAS  PubMed  Google Scholar 

  72. Aouadi M, Tencerova M, Vangala P, Yawe JC, Nicoloro SM, Amano SU, Cohen JL, Czech MP. Gene silencing in adipose tissue macrophages regulates whole-body metabolism in obese mice. Proc Natl Acad Sci U S A. 2013;110(20):8278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kahles F, Findeisen HM, Bruemmer D. Osteopontin: a novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab. 2014;3(4):384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nomiyama T, Perez-Tilve D, Ogawa D, Gizard F, Zhao Y, Heywood EB, Jones KL, Kawamori R, Cassis LA, Tschöp MH, Bruemmer D. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Invest. 2007;117(10):2877–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gómez-Ambrosi J, Catalán V, Ramírez B, Rodríguez A, Colina I, Silva C, Rotellar F, Mugueta C, Gil MJ, Cienfuegos JA, Salvador J, Frühbeck G. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metab. 2007;92(9):3719–27.

    Article  PubMed  Google Scholar 

  76. Schreier M, Schwartze JT, Landgraf K, Scheuermann K, Erbs S, Herberth G, Pospisilik JA, Kratzsch J, Kiess W, Körner A. Osteopontin is BMI-independently related to early endothelial dysfunction in children. J Clin Endocrinol Metab. 2016;101(11):4161–9.

    Article  CAS  PubMed  Google Scholar 

  77. Boucher-Berry C, Speiser PW, Carey DE, Shelov SP, Accacha S, Fennoy I, Rapaport R, Espinal Y, Rosenbaum M. Vitamin D, osteocalcin, and risk for adiposity as comorbidities in middle school children. J Bone Miner Res. 2012;27(2):283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Reinehr T, Roth CL. A new link between skeleton, obesity and insulin resistance: relationships between osteocalcin, leptin and insulin resistance in obese children before and after weight loss. Int J Obes. 2010;34(5):852–8.

    Article  CAS  Google Scholar 

  79. Lenders CM, Lee PD, Feldman HA, Wilson DM, Abrams SH, Gitelman SE, Klish WJ, Wertz MS, Taylor GA, Alongi RT, Chen TC, Holick MF, Elisabeth Glaser Pediatric Research Network Obesity Study Group. A cross-sectional study of osteocalcin and body fat measures among obese adolescents. Obesity (Silver Spring). 2013;21(4):808–14.

    Article  CAS  Google Scholar 

  80. Ferron M, Lacombe J. Regulation of energy metabolism by the skeleton: osteocalcin and beyond. Arch Biochem Biophys. 2014;561:137–46.

    Article  CAS  PubMed  Google Scholar 

  81. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130:456–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Freemark MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Freemark, M. (2018). Obesity and the Endocrine System, Part II: The Effects of Childhood Obesity on Growth and Bone Maturation, Thyroid and Adrenal Function, Sexual Development, and Bone Mineralization. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_20

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics