Skip to main content

Central Control of Energy Metabolism and Hypothalamic Obesity

  • Chapter
  • First Online:
Pediatric Obesity

Part of the book series: Contemporary Endocrinology ((COE))

  • 2817 Accesses

Abstract

Energy balance in humans is regulated by a complex neuroendocrine system centered in the hypothalamus. The mechanical or functional disruption of the hypothalamic network that regulates energy homeostasis causes intractable weight gain, which is termed “hypothalamic obesity (HyOb).” It took many years to discover mechanisms by which the hypothalamus controls energy homeostasis, but recent studies have clarified how the hypothalamus regulates appetite and satiety. The disruptions causing HyOb can result from brain tumors, neurosurgery, cranial radiotherapy, and genetic defects. Unfortunately, attempts at controlling HyOb through diet, exercise, or pharmacological treatment are not satisfactory at the moment. However, new treatment opportunities in genetic forms of obesity and the application of bariatric surgery hold promise for the treatment of HyOb. This chapter summarizes hypothalamic appetite regulation and the pathophysiology, metabolic features, etiology, clinical characteristics, and treatment modalities for hypothalamic obesity in children and adolescents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. King BM. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol Behav. 2006;87:221–44.

    Article  CAS  PubMed  Google Scholar 

  2. Haliloglu B, Bereket A. Hypothalamic obesity in children: pathophysiology to clinical management. J Pediatr Endocrinol Metab. 2015;28(5–6):503–13.

    PubMed  Google Scholar 

  3. Bereket A, Kiess W, Lustig RH, Muller HL, Goldstone AP, Weiss R, et al. Hypothalamic obesity in children. Obes Rev. 2012;13(9):780–98.

    Article  CAS  PubMed  Google Scholar 

  4. Wardlaw SL. Hypothalamic proopiomelanocortin processing and the regulation of energy balance. Eur J Pharmacol. 2011;6660(1):213–9.

    Article  Google Scholar 

  5. Cowley MA, Smith RG, Diano S, Tschöp M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003;37(4):649–61.

    Article  CAS  PubMed  Google Scholar 

  6. Woods SC, D'Alessio DA. Central control of body weight and appetite. J Clin Endocrinol Metab. 2008;93(11 Suppl 1):S37–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Maekawa F, Fujiwara K, Toriya M, Maejima Y, Nishio T, Toyoda Y, Nohara K, Yashiro T, Yada T. Brain-derived neurotrophic factor in VMH as the causal factor for and therapeutic tool to treat visceral adiposity and hyperleptinemia in type 2 diabetic Goto-Kakizaki rats. Front Synaptic Neurosci. 2013;5:7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee M, Korner J. Review of physiology, clinical manifestations, and management of hypothalamic obesity in humans. Pituitary. 2009;12(2):87–95.

    Article  CAS  PubMed  Google Scholar 

  9. Sakurai T. Roles of orexins in the regulation of body weight homeostasis. Obes Res Clin Pract. 2014;8(5):e414–20.

    Article  PubMed  Google Scholar 

  10. Lustig RH. Autonomic dysfunction of the β-cell and the pathogenesis of obesity. Rev Endocr Metab Disease. 2003;4:23–32.

    Article  CAS  Google Scholar 

  11. Guran T, Turan S, Bereket A, et al. The role of leptin, soluble leptin receptor, resistin, and insulin secretory dynamics in the pathogenesis of hypothalamic obesity in children. Eur J Pediatr. 2009;168:1043–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bray GA, Inoue S, Nishizawa Y. Hypothalamic obesity. The autonomic hypothesis and the lateral hypothalamus. Diabetologia. 1981;20(Suppl):366–77.

    Article  CAS  Google Scholar 

  13. Simoneau-Roy J, O'Gorman C, Pencharz P, Adeli K, Daneman D, Hamilton J. Insulin sensitivity and secretion in children and adolescents with hypothalamic obesity following treatment for craniopharyngioma. Clin Endocrinol. 2010;72(3):364–70.

    Article  CAS  Google Scholar 

  14. Lustig RH. Hypothalamic obesity: causes, consequences, treatment. Pediatr Endocrinol Rev. 2008;6(2):220–7.

    PubMed  Google Scholar 

  15. Shaikh MG, Grundy R, Kirk J. Hyperleptinaemia rather than fasting hyperinsulinaemia is associated with obesity following hypothalamic damage in children. Eur J Endocrinol. 2008;159(6):791–7.

    Article  CAS  PubMed  Google Scholar 

  16. Bucher H, Zapf J, Torresani T, Prader A, Froesch ER, Illig R. Insulin-like growth factors I and II, prolactin, and insulin in 19 growth hormone deficient children with excessive, normal, or decreased longitudinal growth after operation for craniopharyngioma. N Engl J Med. 1983;309:1142–6.

    Article  CAS  PubMed  Google Scholar 

  17. Roth CL, Hunneman DH, Gebhardt U, Stoffel-Wagner B, Reinehr T, Muller HL. Reduced sympathetic metabolites in urine of obese patients with craniopharyngioma. Pediatr Res. 2007;61:496–501.

    Article  CAS  PubMed  Google Scholar 

  18. Wang C, Billington CJ, Levine AS, Kotz CM. Effect of CART in the hypothalamic paraventricular nucleus on feeding and uncoupling protein gene expression. Neuroreport. 2000;11:3251–5.

    Article  CAS  PubMed  Google Scholar 

  19. Müller HL, Handwerker G, Wollny B, Faldum A, Sorensen N. Melatonin secretion and increased daytime sleepiness in childhood craniopharyngioma patients. J Clin Endocrinol Metab. 2002;87:3993–6.

    Article  PubMed  Google Scholar 

  20. Wolden-Hanson T, Mitton DR, McCants RI, Yellon SM, Wilkinson CW, Matsumoto AM, et al. Daily melatonin administration to middle aged male rats suppresses body weight, intra abdominal adiposity, and plasma leptin, and insulin independent of food intake and total body fat. Endocrinology. 2000;141:487–97.

    Article  CAS  PubMed  Google Scholar 

  21. Kassayova M, Markova M, Bojkova B, Adamekova E, Kubartka P, Ahlersova E, et al. Influence of long-term melatonin administration on basic physiological and metabolic variables of young Wistar Han rats. Biologia. 2006;61:313–20.

    Article  CAS  Google Scholar 

  22. Tiosano D, Eisentein I, Militianu D, Chrousos GP, Hochberg Z. 11 beta-Hydroxysteroid dehydrogenase activity in hypothalamic obesity. J Clin Endocrinol Metab. 2003;88:379–84.

    Article  CAS  PubMed  Google Scholar 

  23. Friedberg M, Zoumakis E, Hiroi N, Bader T, Chrousos GP, Hochberg Z. Modulation of 11 beta-hydroxysteroid dehydrogenase type 1 in mature human subcutaneous adipocytes by hypothalamic messengers. J Clin Endocrinol Metab. 2003;88:385–93.

    Article  CAS  PubMed  Google Scholar 

  24. Müller HL. Craniopharyngioma. Endocr Rev. 2014;35(3):513–43.

    Article  PubMed  Google Scholar 

  25. Müller HL, Bueb K, Bartels U, et al. Obesity after childhood craniopharyngioma–German multicenter study on pre-operative risk factors and quality of life. Klin Padiatr. 2001;213:244–9.

    Article  PubMed  Google Scholar 

  26. Müller HL. Craniopharyngioma and hypothalamic injury: latest insights into consequent eating disorders and obesity. Curr Opin Endocrinol Diabetes Obes. 2016;23:81–9.

    Article  PubMed  Google Scholar 

  27. Haliloglu B, Atay Z, Guran T, Abalı S, Bas S, Turan S, Bereket A. Risk factors for mortality caused by hypothalamic obesity in children with hypothalamic tumours. Pediatr Obes. 2016;11(5):383–8.

    Article  CAS  PubMed  Google Scholar 

  28. Lustig RH, Post SM, Srivannaboon K, Rose SR, Danish RK, Burghen GA, et al. Risk factors for the development of obesity in children surviving brain tumors. J Clin Endocrinol Metab. 2003;88:611–6.

    Article  CAS  PubMed  Google Scholar 

  29. Iughetti L, Bruzzi P, Predieri B, Paolucci P. Obesity in patients with acute lymphoblastic leukemia in childhood. Ital J Pediatr. 2012;38:4.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Srinivasan S, Ogle GD, Garnett SP, Briody JN, Lee JW, Cowell CT. Features of the metabolic syndrome after childhood craniopharyngioma. J Clin Endocrinol Metab. 2004;89:81–6.

    Article  CAS  PubMed  Google Scholar 

  31. Hoffmann A, Bootsveld K, Gebhardt U, Daubenbüchel AM, Sterkenburg AS, Müller HL. Nonalcoholic fatty liver disease and fatigue in long-term survivors of childhood-onset craniopharyngioma. Eur J Endocrinol. 2015;173(3):389–97.

    Article  CAS  PubMed  Google Scholar 

  32. Müller HL, Handwerker G, Gebhardt U, et al. Melatonin treatment in obese patients with childhood craniopharyngioma and increased daytime sleepiness. Cancer Causes Control. 2006;17:583–9.

    Article  PubMed  Google Scholar 

  33. Rosen G, Brand SR. Sleep in children with cancer: case review of 70 children evaluated in a comprehensive pediatric sleep center. Support Care Cancer. 2011;19(7):985–94.

    Article  PubMed  Google Scholar 

  34. Mason PW, Krawiecki N, Meacham LR. The use of dextroamphetamine to treat obesity and hyperphagia in children treated for craniopharyngioma. Arch Pediatr Adolesc Med. 2002;156:887–92.

    Article  PubMed  Google Scholar 

  35. Roth CL, Eslamy H, Werny D, Elfers C, Shaffer ML, Pihoker C, Ojemann J, Dobyns WB. Semiquantitative analysis of hypothalamic damage on MRI predicts risk for hypothalamic obesity. Obesity (Silver Spring). 2015;23(6):1226–33.

    Article  Google Scholar 

  36. Geffner M, Lundberg M, Koltowska-Häggström M, Abs R, Verhelst J, Erfurth EM, et al. Changes in height, weight, and body mass index in children with craniopharyngioma after three years of growth hormone therapy: analysis of KIGS (Pfizer international growth database). J Clin Endocrinol Metab. 2004;89(11):5435–40.

    Article  CAS  PubMed  Google Scholar 

  37. Elowe-Gruau E, Beltrand J, Brauner R, et al. Childhood craniopharyngioma: hypothalamus-sparing surgery decreases the risk of obesity. J Clin Endocrinol Metab. 2013;98:2376–82.

    Article  CAS  PubMed  Google Scholar 

  38. Mallucci C, Pizer B, Blair J, et al. Management of craniopharyngioma: the Liverpool experience following the introduction of the CCLG guidelines. Introducing a new risk assessment grading system. Childs Nerv Syst. 2012;28:1181–92.

    Article  PubMed  Google Scholar 

  39. Olsson DS, Andersson E, Bryngelsson IL, Nilsson AG, Johannsson G. Excess mortality and morbidity in patients with craniopharyngioma, especially in patients with childhood onset: a population-based study in Sweden. J Clin Endocrinol Metab. 2015;100(2):467–74.

    Article  CAS  PubMed  Google Scholar 

  40. Rakhshani N, Jeffery AS, Schulte F, Barrera M, Atenafu EG, Hamilton JK. Evaluation of a comprehensive care clinic model for children with brain tumor and risk for hypothalamic obesity. Obesity. 2010;18(9):1768–74.

    Article  CAS  PubMed  Google Scholar 

  41. Ismail D, O’Connell MA, Zacharin MR. Dexamphetamine use for management of obesity and hypersomnolence following hypothalamic injury. J Pediatr Endocrinol Metab. 2006;19:129–34.

    Article  CAS  PubMed  Google Scholar 

  42. Greenway FL, Bray GA. Treatment of hypothalamic obesity with caffeine and ephedrine. Endocr Pract. 2008;14:697–703.

    Article  PubMed  Google Scholar 

  43. Lustig RH, Hinds PS, Ringwald-Smith K, et al. Octreotide therapy of pediatric hypothalamic obesity: a double-blind, placebo-controlled trial. J Clin Endocrinol Metab. 2003;88:2586–92.

    Article  CAS  PubMed  Google Scholar 

  44. Weiss R.. URL http://clinicaltrials.gov/ct2/show/NCT00076362.

  45. Hamilton JK, Conwell LS, Syme C, Ahmet A, Jeffery A, Daneman D. Hypothalamic obesity following Craniopharyngioma surgery: results of a pilot trial of combined Diazoxide and metformin therapy. Int J Pediatr Endocrinol. 2011;2011:417949.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brauner R, Serreau R, Souberbielle JC, Pouillot M, Grouazel S, Recasens C, Zerah M, Sainte-Rose C, Treluyer JM. Diazoxide in children with obesity after hypothalamic-pituitary lesions: a randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2016;101(12):4825–33.

    Article  CAS  PubMed  Google Scholar 

  47. Fernandes JK, Klein MJ, Ater JL, Kuttesch JF, Vassilopoulou-Sellin R. Triiodothyronine supplementation for hypothalamic obesity. Metabolism. 2002;51:1381–3.

    Article  CAS  PubMed  Google Scholar 

  48. Pi-Sunyer X, Astrup A, Fujioka K, Greenway F, Halpern A, Krempf M, Lau DC, le Roux CW, Violante Ortiz R, Jensen CB, Wilding JP, SCALE Obesity and Prediabetes NN8022-1839 Study Group. A randomized, controlled trial of 3.0 mg of Liraglutide in weight management. N Engl J Med. 2015;373(1):11–22.

    Article  PubMed  Google Scholar 

  49. Zoicas F, Droste M, Mayr B, Buchfelder M, Schöfl C. GLP-1 analogues as a new treatment option for hypothalamic obesity in adults: report of nine cases. Eur J Endocrinol. 2013;168(5):699–706.

    Article  CAS  PubMed  Google Scholar 

  50. Simmons JH, Shoemaker AH, Roth CL. Treatment with glucagon-like Peptide-1 agonist exendin-4 in a patient with hypothalamic obesity secondary to intracranial tumor. Horm Res Paediatr. 2012;78(1):54–8.

    Article  CAS  PubMed  Google Scholar 

  51. Ando T, Haraguchi A, Matsunaga T, Natsuda S, Yamasaki H, Usa T, Kawakami A. Liraglutide as a potentially useful agent for regulating appetite in diabetic patients with hypothalamic hyperphagia and obesity. Intern Med. 2014;53(16):1791–5.

    Article  PubMed  Google Scholar 

  52. She M, Deng X, Guo Z, Laudon M, Hu Z, Liao D, et al. NEU-P11, a novel melatonin agonist, inhibits weight gain and improves insulin sensitivity in high-fat/high-sucrose-fed rats. Pharmacol Res. 2009;59:248–53.

    Article  CAS  PubMed  Google Scholar 

  53. Oxenkrug GF, Summergrad P. Ramelteon attenuates age-associated hypertension and weight gain in spontaneously hypertensive rats. Ann N Y Acad Sci. 2010;1199:114–20.

    Article  CAS  PubMed  Google Scholar 

  54. Kühnen P, Clément K, Wiegand S, Blankenstein O, Gottesdiener K, Martini LL, Mai K, Blume-Peytavi U, Grüters A, Krude H. Proopiomelanocortin deficiency treated with a Melanocortin-4 receptor agonist. N Engl J Med. 2016;375(3):240–6.

    Article  PubMed  Google Scholar 

  55. Michalsky M, Reichard K, Inge T, Pratt J. Lenders C; American Society for Metabolic and Bariatric Surgery. ASMBS pediatric committee best practice guidelines. Surg Obes Relat Dis. 2012;8(1):1–7.

    Article  PubMed  Google Scholar 

  56. Desai NK, Wulkan ML, Inge TH. Update on adolescent bariatric surgery. Endocrinol Metab Clin N Am. 2016;45(3):667–76.

    Article  Google Scholar 

  57. Alqahtani AR, Elahmedi MO, Al Qahtani AR, Lee J, Butler MG. Laparoscopic sleeve gastrectomy in children and adolescents with Prader-Willi syndrome: a matched-control study. Surg Obes Relat Dis. 2016;12(1):100–10.

    Article  PubMed  Google Scholar 

  58. Bretault M, Boillot A, Muzard L, et al. Clinical review: bariatric surgery following treatment for craniopharyngioma: a systematic review and individual-level data meta-analysis. J Clin Endocrinol Metab. 2013;98:2239–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Bereket MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Haliloglu, B., Bereket, A. (2018). Central Control of Energy Metabolism and Hypothalamic Obesity. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_2

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics