Skip to main content

Obesity and the Endocrine System, Part I: Pathogenesis of Weight Gain in Endocrine and Metabolic Disorders

  • Chapter
  • First Online:
Pediatric Obesity

Part of the book series: Contemporary Endocrinology ((COE))

  • 2750 Accesses

Abstract

Certain endocrine and metabolic disorders cause mild to moderate weight gain and fat deposition. Excess fat storage in turn can have profound effects on intermediary metabolism and endocrine function. In this chapter, I present a brief discussion of the pathogenesis of adiposity and weight gain in various disorders of endocrine and metabolic function. In the companion chapter (“Obesity and the Endocrine System Part II”), I review the effects of obesity on linear growth and bone maturation, thyroid function, sexual development, adrenal function, calcium homeostasis, and bone mineralization. Subsequent chapters in this volume discuss the implications of obesity for insulin production and action and the regulation of glucose tolerance, blood pressure, lipid metabolism, atherogenesis, sleep hygiene, and hepatic, renal, and neurologic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gomes-Santos E, Salvatori R, Ferrão TO, Oliveira CR, Diniz RD, Santana JA, Pereira FA, Barbosa RA, Souza AH, Melo EV, Epitácio-Pereira CC, Oliveira-Santos AA, Oliveira IA, Machado JA, Santana-Júnior FJ, Barreto-Filho JA, Aguiar-Oliveira MH. Increased visceral adiposity and cortisol to cortisone ratio in adults with congenital lifetime isolated GH deficiency. J Clin Endocrinol Metab. 2014;99(9):3285–9.

    Article  CAS  PubMed  Google Scholar 

  2. Guevara-Aguirre J, Rosenbloom AL, Balasubramanian P, Teran E, Guevara-Aguirre M, Guevara C, Procel P, Alfaras I, De Cabo R, Di Biase S, Narvaez L, Saavedra J, Longo VD. GH receptor deficiency in Ecuadorian adults is associated with obesity and enhanced insulin sensitivity. J Clin Endocrinol Metab. 2015;100(7):2589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Berryman DE, Glad CA, List EO, Johannsson G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2013;9(6):346–56.

    Article  CAS  PubMed  Google Scholar 

  4. Agha A, Monson JP. Modulation of glucocorticoid metabolism by the growth hormone: IGF-1 axis. Clin Endocrinol. 2007;66:459–65.

    CAS  Google Scholar 

  5. Chikani V, Ho KK. Action of GH on skeletal muscle function: molecular and metabolic mechanisms. J Mol Endocrinol. 2013;52(1):R107–23.

    Article  PubMed  Google Scholar 

  6. Zueger T, Loher H, Egger A, Boesch C, Christ E. Regulation of fuel metabolism during exercise in hypopituitarism with growth hormone-deficiency (GHD). Growth Hormon IGF Res. 2016;29:39–44.

    Article  CAS  Google Scholar 

  7. Chong PK, Jung RT, Scrimgeour CM, Rennie MJ, Paterson CR. Energy expenditure and body composition in growth hormone deficient adults on exogenous growth hormone. Clin Endocrinol. 1994;40(1):103–10.

    Article  CAS  Google Scholar 

  8. Stenlöf K, Sjöström L, Lönn L, Bosaeus I, Kvist H, Tölli J, Lindstedt G, Bengtsson BA. Effects of recombinant human growth hormone on basal metabolic rate in adults with pituitary deficiency. Metabolism. 1995;44(1):67–74.

    Article  PubMed  Google Scholar 

  9. Santini F, Marzullo P, Rotondi M, Ceccarini G, Pagano L, Ippolito S, Chiovato L, Biondi B. Mechanisms in endocrinology: the crosstalk between thyroid gland and adipose tissue: signal integration in health and disease. Eur J Endocrinol. 2014;171(4):R137–52.

    Article  CAS  PubMed  Google Scholar 

  10. Lombardi A, Moreno M, de Lange P, Iossa S, Busiello RA, Goglia F. Regulation of skeletal muscle mitochondrial activity by thyroid hormones: focus on the “old” triiodothyronine and the “emerging” 3,5-diiodothyronine. Front Physiol. 2015;6:237.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee MJ, Pramyothin P, Karastergiou K, Fried SK. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim Biophys Acta. 2014;1842(3):473–81.

    Article  CAS  PubMed  Google Scholar 

  12. Geer EB, Lalazar Y, Couto LM, Cohen V, Lipton LR, Shi W, Bagiella E, Conwell I, Bederson J, Kostadinov J, Post KD, Freda PU. A prospective study of appetite and food craving in 30 patients with Cushing’s disease. Pituitary. 2016;19(2):117–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. LoPresti JS, Eigen A, Kaptein E, Anderson KP, Spencer CA, Nicoloff JT. Alterations in 3,3′5′-triiodothyronine metabolism in response to propylthiouracil, dexamethasone, and thyroxine administration in man. J Clin Invest. 1989;84(5):1650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brennan-Speranza TC, Henneicke H, Gasparini SJ, Blankenstein KI, Heinevetter U, Cogger VC, Svistounov D, Zhang Y, Cooney GJ, Buttgereit F, Dunstan CR, Gundberg C, Zhou H, Seibel MJ. Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J Clin Invest. 2012;122(11):4172–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bonny AE, Lange HL, Hade EM, Kaufman B, Reed MD, Mesiano S. Serum adipocytokines and adipose weight gain: a pilot study in adolescent females initiating depot medroxyprogesterone acetate. Contraception. 2015;92(4):298–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sung JH, An HS, Jeong JH, Shin S, Song SY. Megestrol acetate increases the proliferation, migration, and adipogenic differentiation of adipose-derived stem cells via glucocorticoid receptor. Stem Cells Transl Med. 2015;4(7):789–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pelkman CL, Chow M, Heinbach RA, Rolls BJ. Short-term effects of a progestational contraceptive drug on food intake, resting energy expenditure, and body weight in young women. Am J Clin Nutr. 2001;73(1):19–26.

    CAS  PubMed  Google Scholar 

  18. Lord K, Dzata E, Snider KE, Gallagher PR, De León DD. Clinical presentation and management of children with diffuse and focal hyperinsulinism: a review of 223 cases. J Clin Endocrinol Metab. 2013;98(11):E1786–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bonfig W, Kann P, Rothmund M, Schwarz HP. Recurrent hypoglycemic seizures and obesity: delayed diagnosis of an insulinoma in a 15 year-old boy--final diagnostic localization with endosonography. J Pediatr Endocrinol Metab. 2007;20(9):1035–8.

    Article  PubMed  Google Scholar 

  20. Goudet P, Dalac A, Le Bras M, Cardot-Bauters C, Niccoli P, Lévy-Bohbot N, du Boullay H, Bertagna X, Ruszniewski P, Borson-Chazot F, Vergès B, Sadoul JL, Ménégaux F, Tabarin A, Kühn JM, d’Anella P, Chabre O, Christin-Maitre S, Cadiot G, Binquet C, Delemer B. MEN1 disease occurring before 21 years old: a 160-patient cohort study from the Groupe d’étude des Tumeurs Endocrines. J Clin Endocrinol Metab. 2015;100(4):1568–77.

    Article  CAS  PubMed  Google Scholar 

  21. Simoneau-Roy J, O’Gorman C, Pencharz P, Adeli K, Daneman D, Hamilton J. Insulin sensitivity and secretion in children and adolescents with hypothalamic obesity following treatment for craniopharyngioma. Clin Endocrinol. 2010;72:364–70.

    Article  CAS  Google Scholar 

  22. Brauner R, Serreau R, Souberbielle JC, Pouillot M, Grouazel S, Recasens C, Zerah M, Sainte-Rose C, Treluyer JM. Diazoxide in children with obesity after hypothalamic-pituitary lesions: a randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2016;101(12):4825–33.

    Article  CAS  PubMed  Google Scholar 

  23. Lee SH, Zabolotny JM, Huang H, Lee H, Kim YB. Insulin in the nervous system and the mind: functions in metabolism, memory, and mood. Mol Metab. 2016;5(8):589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. 2016;96(4):1169–209.

    Article  PubMed  Google Scholar 

  25. Hallschmid M, Benedict C, Schultes B, Fehm HL, Born J, Kern W. Intranasal insulin reduces body fat in men but not in women. Diabetes. 2004;53(11):3024–9.

    Article  CAS  PubMed  Google Scholar 

  26. Benedict C, Kern W, Schultes B, Born J, Hallschmid M. Differential sensitivity of men and women to anorexigenic and memory-improving effects of intranasal insulin. J Clin Endocrinol Metab. 2008;93(4):1339–44. https://doi.org/10.1210/jc.2007-2606.

    Article  CAS  PubMed  Google Scholar 

  27. Heni M, Schöpfer P, Peter A, Sartorius T, Fritsche A, Synofzik M, Häring HU, Maetzler W, Hennige AM. Evidence for altered transport of insulin across the blood-brain barrier in insulin-resistant humans. Acta Diabetol. 2014;51(4):679–81.

    Article  CAS  PubMed  Google Scholar 

  28. Balland E, Cowley MA. New insights in leptin resistance mechanisms in mice. Front Neuroendocrinol. 2015;39:59–65.

    Article  CAS  PubMed  Google Scholar 

  29. Sáinz N, Barrenetxe J, Moreno-Aliaga MJ, Martínez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism. 2015;64(1):35–46.

    Article  PubMed  Google Scholar 

  30. Zerradi M, Dereumetz J, Boulet MM, Tchernof A. Androgens, body fat distribution and adipogenesis. Curr Obes Rep. 2014;3(4):396–403.

    Article  PubMed  Google Scholar 

  31. Jeffery E, Wing A, Holtrup B, Sebo Z, Kaplan JL, Saavedra-Peña R, Church CD, Colman L, Berry R, Rodeheffer MS. The adipose tissue microenvironment regulates depot-specific adipogenesis in obesity. Cell Metab. 2016;24(1):142–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O’Gorman CS, Syme C, Lang J, Bradley TJ, Wells GD, Hamilton JK. An evaluation of early cardiometabolic risk factors in children and adolescents with Turner syndrome. Clin Endocrinol. 2013;78(6):907–13.

    Article  Google Scholar 

  33. Mavinkurve M, O’Gorman CS. Cardiometabolic and vascular risks in young and adolescent girls with Turner syndrome. BBA Clin. 2015;3:304–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hanew K, Tanaka T, Horikawa R, Hasegawa T, Fujita K, Yokoya S. Women with Turner syndrome are at high risk of lifestyle-related disease -From questionnaire surveys by the Foundation for Growth Science in Japan. Endocr J. 2016;63(5):449–56.

    Article  PubMed  Google Scholar 

  35. Bojesen A, Høst C, Gravholt CH. Klinefelter’s syndrome, type 2 diabetes and the metabolic syndrome: the impact of body composition. Mol Hum Reprod. 2010;16(6):396–401.

    Article  PubMed  Google Scholar 

  36. Chang S, Skakkebæk A, Trolle C, Bojesen A, Hertz JM, Cohen A, Hougaard DM, Wallentin M, Pedersen AD, Østergaard JR, Gravholt CH. Anthropometry in Klinefelter syndrome--multifactorial influences due to CAG length, testosterone treatment and possibly intrauterine hypogonadism. J Clin Endocrinol Metab. 2015;100(3):E508–17.

    Article  CAS  PubMed  Google Scholar 

  37. Maffei L, Murata Y, Rochira V, Tubert G, Aranda C, Vazquez M, Clyne CD, Davis S, Simpson ER, Carani C. Dysmetabolic syndrome in a man with a novel mutation of the aromatase gene: effects of testosterone, alendronate, and estradiol treatment. J Clin Endocrinol Metab. 2004;89(1):61–70.

    Article  CAS  PubMed  Google Scholar 

  38. Misso ML, Murata Y, Boon WC, Jones ME, Britt KL, Simpson ER. Cellular and molecular characterization of the adipose phenotype of the aromatase-deficient mouse. Endocrinology. 2003;144(4):1474–80.

    Article  CAS  PubMed  Google Scholar 

  39. Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med. 1994;331(16):1056–61.

    Article  CAS  PubMed  Google Scholar 

  40. Heine PA, Taylor JA, Iwamoto GA, Lubahn DB, Cooke PS. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc Natl Acad Sci U S A. 2000;97(23):12729–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Van Pelt RE, Gavin KM, Kohrt WM. Regulation of body composition and bioenergetics by estrogens. Endocrinol Metab Clin N Am. 2015;44(3):663–76.

    Article  Google Scholar 

  42. Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev. 2013;34(3):309–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Laitinen EM, Hero M, Vaaralahti K, Tommiska J, Raivio T. Bone mineral density, body composition and bone turnover in patients with congenital hypogonadotropic hypogonadism. Int J Androl. 2012;35(4):534–40.

    Article  CAS  PubMed  Google Scholar 

  44. Tam FI, Huebner A, Hofbauer LC, Rohayem J. Effects of adolescence-onset hypogonadism on metabolism, bone mineral density and quality of life in adulthood. J Pediatr Endocrinol Metab. 2015;28(9–10):1047–55.

    CAS  PubMed  Google Scholar 

  45. Aksglaede L, Molgaard C, Skakkebaek NE, Juul A. Normal bone mineral content but unfavourable muscle/fat ratio in Klinefelter syndrome. Arch Dis Child. 2008;93(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  46. Kelly DM, Jones TH. Testosterone and obesity. Obes Rev. 2015;16(7):581–606.

    Article  CAS  PubMed  Google Scholar 

  47. Shen M, Shi H. Sex hormones and their receptors regulate liver energy homeostasis. Int J Endocrinol. 2015;2015:294278.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Navarro G, Allard C, Xu W, Mauvais-Jarvis F. The role of androgens in metabolism, obesity, and diabetes in males and females. Obesity (Silver Spring). 2015;23(4):713–9.

    Article  CAS  Google Scholar 

  49. Singh R, Artaza JN, Taylor WE, Gonzalez-Cadavid NF, Bhasin S. Androgens stimulate myogenic differentiation and inhibit adipogenesis in C3H 10T1/2 pluripotent cells through an androgen receptor-mediated pathway. Endocrinology. 2003;144(11):5081–8.

    Article  CAS  PubMed  Google Scholar 

  50. Traish AM, Abdallah B, Yu G. Androgen deficiency and mitochondrial dysfunction: implications for fatigue, muscle dysfunction, insulin resistance, diabetes, and cardiovascular disease. Horm Mol Biol Clin Investig. 2011;8(1):431–44.

    CAS  PubMed  Google Scholar 

  51. Cooke PS, Heine PA, Taylor JA, Lubahn DB. The role of estrogen and estrogen receptor-alpha in male adipose tissue. Mol Cell Endocrinol. 2001;178(1–2):147–54.

    Article  CAS  PubMed  Google Scholar 

  52. Holl RW, Kunze D, Etzrodt H, Teller W, Heinze E. Turner syndrome: final height, glucose tolerance, bone density and psychosocial status in 25 adult patients. Eur J Pediatr. 1994;153(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  53. Choi IK, Kim DH, Kim HS. The abnormalities of carbohydrate metabolism in Turner syndrome: analysis of risk factors associated with impaired glucose tolerance. Eur J Pediatr. 2005;164(7):442–7.

    Article  PubMed  Google Scholar 

  54. Mazzanti L, Bergamaschi R, Castiglioni L, Zappulla F, Pirazzoli P, Cicognani A. Turner syndrome, insulin sensitivity and growth hormone treatment. Horm Res. 2005;64(Suppl 3):51–7.

    CAS  PubMed  Google Scholar 

  55. Wooten N, Bakalov VK, Hill S, Bondy CA. Reduced abdominal adiposity and improved glucose tolerance in growth hormone-treated girls with Turner syndrome. J Clin Endocrinol Metab. 2008;93(6):2109–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Koulouri O, Ostberg J, Conway GS. Liver dysfunction in Turner’s syndrome: prevalence, natural history and effect of exogenous oestrogen. Clin Endocrinol. 2008;69(2):306–10.

    Article  CAS  Google Scholar 

  57. de Lange IM, Verrijn Stuart AA, van der Luijt RB, Ploos van Amstel HK, van Haelst MM. Macrosomia, obesity, and macrocephaly as first clinical presentation of PHP1b caused by STX16 deletion. Am J Med Genet A. 2016;170(9):2431–5.

    Article  PubMed  Google Scholar 

  58. Shoemaker AH, Lomenick JP, Saville BR, Wang W, Buchowski MS, Cone RD. Energy expenditure in obese children with pseudohypoparathyroidism type 1a. Int J Obes. 2013;37(8):1147–53.

    Article  CAS  Google Scholar 

  59. Roizen JD, Danzig J, Groleau V, McCormack S, Casella A, Harrington J, Sochett E, Tershakovec A, Zemel BS, Stallings VA, Levine MA. Resting energy expenditure is decreased in pseudohypoparathyroidism type 1A. J Clin Endocrinol Metab. 2016;101(3):880–8.

    Article  CAS  PubMed  Google Scholar 

  60. Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618–37.

    Article  CAS  PubMed  Google Scholar 

  61. Freemark M. Management of adolescents with polycystic ovary syndrome. J Clin Endocrinol Metab. 2011;96(11):3354–6.

    Article  CAS  PubMed  Google Scholar 

  62. Svendsen PF, Madsbad S, Nilas L, Paulsen SK, Pedersen SB. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome. Int J Obes. 2009;33(11):1249–56.

    Article  CAS  Google Scholar 

  63. Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37(5):467–520.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Cree-Green M, Bergman BC, Coe GV, Newnes L, Baumgartner AD, Bacon S, Sherzinger A, Pyle L, Nadeau KJ. Hepatic steatosis is common in adolescents with obesity and PCOS and relates to de novo lipogenesis but not insulin resistance. Obesity (Silver Spring). 2016;24(11):2399–406.

    Article  CAS  Google Scholar 

  65. Kelley CE, Brown AJ, Diehl AM, Setji TL. Review of nonalcoholic fatty liver disease in women with polycystic ovary syndrome. World J Gastroenterol. 2014;20(39):14172–84.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lin AW, Lujan ME. Comparison of dietary intake and physical activity between women with and without polycystic ovary syndrome: a review. Adv Nutr. 2014;5(5):486–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Colao A, Sarno AD, Cappabianca P, Briganti F, Pivonello R, Somma CD, Faggiano A, Biondi B, Lombardi G. Gender differences in the prevalence, clinical features and response to cabergoline in hyperprolactinemia. Eur J Endocrinol. 2003;148(3):325–31.

    Article  CAS  PubMed  Google Scholar 

  68. Gillam MP, Molitch ME, Lombardi G, Colao A. Advances in the treatment of prolactinomas. Endocr Rev. 2006;27:485–534.

    Article  CAS  PubMed  Google Scholar 

  69. Nanbu-Wakao R, Fujitani Y, Masuho Y, Muramatu M, Wakao H. Prolactin enhances CCAAT enhancer-binding protein-beta (C/EBP beta) and peroxisome proliferator-activated receptor gamma (PPAR gamma) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells. Mol Endocrinol. 2000;14(2):307–16.

    CAS  PubMed  Google Scholar 

  70. Fleenor D, Arumugam R, Freemark M. Growth hormone and prolactin receptors in adipogenesis: STAT-5 activation, suppressors of cytokine signaling, and regulation of insulin-like growth factor I. Horm Res. 2006;66(3):101–10.

    CAS  PubMed  Google Scholar 

  71. Ben-Jonathan N, Hugo E. Prolactin (PRL) in adipose tissue: regulation and functions. Adv Exp Med Biol. 2015;846:1–35.

    Article  CAS  PubMed  Google Scholar 

  72. Perez Millan MI, Luque Guillermina M, Ramirez MC, Noain D, Ornstein AM, Rubinstein M, Becu-Villalobos D. Selective disruption of dopamine D2 receptors in pituitary lactotropes 2 increases body weight and adiposity in female mice. Endocrinology. 2014;155:829–39.

    Article  PubMed  Google Scholar 

  73. García MC, López M, Gualillo O, Seoane LM, Diéguez C, Señarís RM. Hypothalamic levels of NPY, MCH, and prepro-orexin mRNA during pregnancy and lactation in the rat: role of prolactin. FASEB J. 2003;17:1392–400.

    Article  PubMed  Google Scholar 

  74. Augustine RA, Grattan DR. Induction of central leptin resistance in hyperphagic pseudopregnant rats by chronic prolactin infusion. Endocrinology. 2008;149(3):1049–55.

    Article  CAS  PubMed  Google Scholar 

  75. Nagaishi VS, Cardinali LI, Zampieri TT, Furigo IC, Metzger M, Donato J Jr. Possible crosstalk between leptin and prolactin during pregnancy. Neuroscience. 2014;259:71–83.

    Article  CAS  PubMed  Google Scholar 

  76. Sonigo C, Bouilly J, Carré N, Tolle V, Caraty A, Tello J, Simony-Conesa FJ, Millar R, Young J, Binart N. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J Clin Invest. 2012;122(10):3791–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Freemark MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Freemark, M. (2018). Obesity and the Endocrine System, Part I: Pathogenesis of Weight Gain in Endocrine and Metabolic Disorders. In: Freemark, M. (eds) Pediatric Obesity. Contemporary Endocrinology. Humana Press, Cham. https://doi.org/10.1007/978-3-319-68192-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68192-4_19

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-68191-7

  • Online ISBN: 978-3-319-68192-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics