Skip to main content

EVE: A Framework for Experiments in Virtual Environments

  • Conference paper
  • First Online:
Spatial Cognition X (Spatial Cognition 2016, KogWis 2016)

Abstract

EVE is a framework for the setup, implementation, and evaluation of experiments in virtual reality. The framework aims to reduce repetitive and error-prone steps that occur during experiment-setup while providing data management and evaluation capabilities. EVE aims to assist researchers who do not have specialized training in computer science. The framework is based on the popular platforms of Unity and MiddleVR. Database support, visualization tools, and scripting for R make EVE a comprehensive solution for research using VR. In this article, we illustrate the functions and flexibility of EVE in the context of an ongoing VR experiment called Neighbourhood Walk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The project appears to be abandoned.

  2. 2.

    https://unity3d.com/unity/system-requirements.

References

  1. ADInstruments: Labchart (2016). http://www.adinstruments.com/products/labchart

  2. Annett, M., Bischof, W.F.: VR for everybody: the SNaP framework. In: SEARIS Workshop in IEEE Virtual Reality, pp. 131–132 (2016)

    Google Scholar 

  3. Bierbaum, A., Just, C., Hartling, P., Meinert, K., Baker, A., Cruz-Neira, C.: VR juggler: a virtual platform for virtual reality application development. In: 2001 Proceedings of Virtual Reality, pp. 89–96. IEEE (2016)

    Google Scholar 

  4. Billen, M.I., Kreylos, O., Hamann, B., Jadamec, M.A., Kellogg, L.H., Staadt, O., Sumner, D.Y.: A geoscience perspective on immersive 3D gridded data visualization. Comput. Geosci. 34(9), 1056–1072 (2016)

    Article  Google Scholar 

  5. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(I), 49–59 (2016)

    Google Scholar 

  6. Chair of Cognitive Science, ETH: EVE: A framework for experiments in virtual environments (2016). https://cog-ethz.github.io/EVE/

  7. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 135–142 (2016)

    Google Scholar 

  8. Dara-Abrams, D., Schinazi, V.R.: Virtual SILCton (2016). http://spactial.ci.northwestern.edu/

  9. Dassault Systemes: Virtools (2016). http://www.3dvia.com/products/3dvia-virtools/

  10. Eon Reality: Eon studio (2016). http://www.eonreality.com/eon-studio/

  11. Fagerholt, E., Lorentzon, M.: Beyond the HUD. User interfaces for increased player immersion in FPS games. Ph.D. thesis, Chalmers University of Technology (2016)

    Google Scholar 

  12. Fagin, R.: Normal forms and relational database operators. In: Proceedings of the 1979 ACM SIGMOD International Conference on Management of Data, pp. 153–160. ACM (1979)

    Google Scholar 

  13. Gaggioli, A.: Using Virtual Reality in Experimental Psychology, vol. 2. IOS Press, Amsterdam (2016)

    Google Scholar 

  14. Grübel, J.: Assessing human interface device interaction in virtual environments. Bachelor thesis. ETH Zürich (2016). http://dx.doi.org/10.3929/ethz-a-010544699

  15. Hackman, D.A., Betancourt, L.M., Brodsky, N.L., Hurt, H., Farah, M.J.: Neighborhood disadvantage and adolescent stress reactivity. Front. Hum. Neurosci. 6, 277 (2012)

    Article  Google Scholar 

  16. Hartig, T., Mitchell, R., De Vries, S., Frumkin, H.: Nature and health. Ann. Rev. Public Health 35, 207–228 (2014)

    Article  Google Scholar 

  17. Health Level Seven: HL7 Message Standard (2016). http://www.hl7.org/implement/standards/product_brief.cfm?product_id=146

  18. Hegarty, M., Richardson, A.E., Montello, D.R., Lovelace, K., Subbiah, I.: Development of a self-report measure of environmental spatial ability. Intelligence 30(5), 425–447 (2016)

    Article  Google Scholar 

  19. HTC: HTC VIVE (2016). https://www.vive.com/

  20. Kort, Y.A.W., Ijsselsteijn, W.A., Kooijman, J., Schuurmans, Y.: Virtual laboratories: comparability of real and virtual environments for environmental psychology. Presence Teleoperators Virtual Environ. 12(4), 360–373 (2016)

    Article  Google Scholar 

  21. Kraemer, D.J.M., Schinazi, V.R., Cawkwell, P.B., Tekriwal, A., Epstein, R.A., Thompson-Schill, S.L.: Verbalizing, visualizing, and navigating: the effect of strategies on encoding a large-scale virtual environment. J. Exp. Psychol. Learn. Mem. Cogn. 43, 611–621 (2016). http://dx.doi.org/10.1037/xlm0000314

    Article  Google Scholar 

  22. Kreylos, O.: Environment-independent VR development. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5358, pp. 901–912. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89639-5_86

    Chapter  Google Scholar 

  23. Kuliga, S.F., Thrash, T., Dalton, R.C., Hölscher, C.: Virtual reality as an empirical research tool - exploring user experience in a real building and a corresponding virtual model. Comput. Environ. Urban Syst. 54, 363–375 (2016)

    Article  Google Scholar 

  24. Laha, B., Sensharma, K., Schiffbauer, J.D., Bowman, D.A.: Effects of immersion on visual analysis of volume data. IEEE Trans. Vis. Comput. Graph. 18(4), 597–606 (2016)

    Article  Google Scholar 

  25. Lloyd, J., Persaud, N.V., Powell, T.E.: Equivalence of real-world and virtual-reality route learning: a pilot study. Cyberpsychol. Behav. 12(4), 423–427 (2016)

    Article  Google Scholar 

  26. Loomis, J.M., Blascovich, J.J.: Immersive virtual environment technology as a basic research tool in psychology. Behav. Res. Methods Instrum. Comput. 31(4), 557–564 (2016)

    Article  Google Scholar 

  27. Maguire, E.A., Nannery, R., Spiers, H.J.: Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129(11), 2894–2907 (2006)

    Article  Google Scholar 

  28. Marchette, S.A., Vass, L.K., Ryan, J., Epstein, R.A.: Anchoring the neural compass: coding of local spatial reference frames in human medial parietal lobe. Nature Neurosci. 17(11), 1598–1606 (2016)

    Article  Google Scholar 

  29. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  30. Mealy, G.H.: A method for synthesizing sequential circuits. Bell Syst. Tech. J. 34(5), 1045–1079 (2016)

    Article  MathSciNet  Google Scholar 

  31. Mechdyne: CAVELib (2016). http://www.mechdyne.com/software.aspx

  32. Meehan, M., Brooks, F.P.: Physiological measures of presence in stressful virtual environments. ACM Trans. Graph. (ToG) 21, 645–652 (2016)

    Google Scholar 

  33. Meehan, M., Razzaque, S., Insko, B., Whitton Jr., M., Brooks, F.P.: Review of four studies on the use of physiological reaction as a measure of presence in stressful virtual environments. Appl. Psychophysiol. Biofeedback 30(3), 239–258 (2016)

    Article  Google Scholar 

  34. Meijer, F., Geudeke, B.L.: Navigating through virtual environments: visual realism improves spatial cognition. CyberPsychol. Behav. 12(5), 517–521 (2016)

    Article  Google Scholar 

  35. MiddleVR: MiddleVR for unity (2016). http://www.middlevr.com/

  36. Moore, E.F.: Gedanken-experiments on sequential machines. Automata Studies 34, 129–153 (2016)

    MathSciNet  Google Scholar 

  37. Oculus VR LLC: Oculus rift (2016). https://www.oculus.com/

  38. Odgers, C.L., Caspi, A., Bates, C.J., Sampson, R.J., Moffitt, T.E.: Systematic social observation of children’s neighborhoods using Google Street View: a reliable and cost-effective method. J. Child Psychol. Psychiatry 53(10), 1009–1017 (2012)

    Article  Google Scholar 

  39. Ooms, J., James, D., DebRoy, S., Wickham, H., Horner, J.: RMySQL: database interface and ‘MySQL’ driver for R (2016). https://cran.r-project.org/package=RMySQL

  40. R Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2016). https://www.r-project.org/

  41. R Special Interest Group on Databases (R-SIG-DB), Wickham, H., Müller, K.: DBI: R database interface (2016). https://cran.r-project.org/package=DBI

  42. Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected walking. In: Proceedings of EUROGRAPHICS. vol. 9, pp. 105–106 (2016)

    Google Scholar 

  43. Razzaque, S., Swapp, D., Slater, M., Whitton, M.C., Steed, A.: Redirected walking in place. In: ACM International Conference Proceeding Series, vol. 23, pp. 123–130 (2016)

    Google Scholar 

  44. Riecke, B.E., Bodenheimer, B., McNamara, T.P., Williams, B., Peng, P., Feuereissen, D.: Do we need to walk for effective virtual reality navigation? Physical rotations alone may suffice. In: Hölscher, C., Shipley, T.F., Olivetti Belardinelli, M., Bateman, J.A., Newcombe, N.S. (eds.) Spatial Cognition 2010. LNCS (LNAI), vol. 6222, pp. 234–247. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14749-4_21

    Chapter  Google Scholar 

  45. Riecke, B.E., Schulte-Pelkum, J.: An integrative approach to presence and self-motion perception research. In: Lombard, M., Biocca, F., Freeman, J., Ijsselsteijn, W., Schaevitz, R.J. (eds.) Immersed in Media, pp. 187–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-10190-3_9

    Google Scholar 

  46. Ruddle, R.A., Lessels, S.: For efficient navigational rich visual scene search, humans require full physical movement, but not a rich visual scene. Psychol. Sci. 17(6), 460–465 (2016)

    Article  Google Scholar 

  47. Sampson, R.J., Raudenbush, S.W.: Systematic social observation of public spaces: a new look at disorder in urban Neighborhoods 1. Am. J. Sociol. 105(3), 603–651 (1999)

    Article  Google Scholar 

  48. Schinazi, V.R., Nardi, D., Newcombe, N.S., Shipley, T.F., Epstein, R.A.: Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus 23(6), 515–528 (2016)

    Article  Google Scholar 

  49. Schulze, J.P., Prudhomme, A., Weber, P., DeFanti, T.A.: CalVR: an advanced open source virtual reality software framework. In: IS&T/SPIE Electronic Imaging, vol. 8649, pp. 864902–864908 (2016). http://dx.doi.org/10.1117/12.2005241

  50. SensoMotoric Instruments: SMI Eye-Tracking (2016). http://www.smivision.com/en/gaze-and-eye-tracking-systems/home.html

  51. Sherman, W.R.: FreeVR (2016). http://www.freevr.org/

  52. Slater, M., Khanna, P., Mortensen, J., Yu, I.: Visual realism enhances realistic response in an immersive virtual environment. IEEE Comput. Graph. Appl. 29(3), 76–84 (2016)

    Article  Google Scholar 

  53. Smith, N.G., Cutchin, S., Kooima, R., Ainsworth, R.A., Sandin, D.J., Schulze, J., Prudhomme, A., Kuester, F., Levy, T.E., DeFanti, T.A.: Cultural heritage omni-stereo panoramas for immersive cultural analytics - from the Nile to the Hijaz. In: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 552–557 (2013)

    Google Scholar 

  54. Spiers, H.J., Maguire, E.A.: Thoughts, behaviour, and brain dynamics during navigation in the real world. Neuroimage 31(4), 1826–1840 (2006)

    Article  Google Scholar 

  55. Sturz, B.R., Bodily, K.D., Katz, J.S.: Evidence against integration of spatial maps in humans. Anim. Cogn. 9(207), 207–217 (2006)

    Article  Google Scholar 

  56. Taube, J.S., Valerio, S., Yoder, R.M.: Is navigation in virtual reality with fMRI really navigation? J. Cogn. Neurosci. 25(7), 1008–1019 (2016)

    Article  Google Scholar 

  57. Taylor II, R.M., Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.: VRPN: a device-independent, network-transparent VR peripheral system. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, vol. 900, pp. 55–61 (2016)

    Google Scholar 

  58. Unity Technologies: Unity3D (2016). http://unity3d.com/

  59. Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks, F.P.: Walking \(>\) walking-in-place \(>\) flying, in virtual environments. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 359–364 (2016)

    Google Scholar 

  60. Vanoni, D., Ge, L., Kuester, F.: Intuitive visualization of reflectance transformation imaging for interactive analysis of cultural artifacts. In: International Conference on Augmented and Virtual Reality, vol. 8853, pp. 397–404 (2016)

    Google Scholar 

  61. Vass, L.K., Copara, M.S., Seyal, M., Shahlaie, K., Farias, S.T., Shen, P.Y., Ekstrom, A.D.: Oscillations go the distance: low-frequency human hippocampal oscillations code spatial distance in the absence of sensory cues during teleportation. Neuron 89(6), 1180–1186 (2016)

    Article  Google Scholar 

  62. VIS Games: Country landscape (2016). http://www.vis-games.de/

  63. Wallet, G., Sauzeon, H., Pala, P.A., Larrue, F., Zheng, X.: Virtual/real transfer of spatial knowledge: benefit from visual fidelity provided in a virtual. Cyberpsychol. Behav. Soc. Networking 14(7), 417–423 (2016)

    Google Scholar 

  64. Weisberg, S.M., Schinazi, V.R., Newcombe, N.S., Shipley, T.F., Epstein, R.A.: Variations in cognitive maps: understanding individual differences in navigation. J. Exp. Psychol. Learn. Mem. Cogn. 40(3), 669–682 (2016)

    Article  Google Scholar 

  65. Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2016). http://ggplot2.org

    Book  MATH  Google Scholar 

  66. Wickham, H., Francois, R.: dplyr: A grammar of data manipulation (2016). https://cran.r-project.org/package=dplyr

  67. WorldViz LLC: Vizard (2016). http://www.worldviz.com/

  68. Zatun: City development (2016). http://zatun.com/

Download references

Acknowledgements

The authors would like to thank Ioannis Giannopoulos and Tyler Thrash for the valuable comments and suggestions during various drafts of this manuscript. We would also like to thank Katja Wolf and Fabian Schewetofski for the development and design of the evaluation screen, GUI interface, and many other features that have now become an integral part of the EVE framework. We also thank VIS Games for the free provision of the 3D models used in our research. Partial support for Daniel Hackman was provided by the Robert Wood Johnson Foundation Health and Society Scholars Program at the University of Wisconsin-Madison in the Department of Population Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jascha Grübel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grübel, J., Weibel, R., Jiang, M.H., Hölscher, C., Hackman, D.A., Schinazi, V.R. (2017). EVE: A Framework for Experiments in Virtual Environments. In: Barkowsky, T., Burte, H., Hölscher, C., Schultheis, H. (eds) Spatial Cognition X. Spatial Cognition KogWis 2016 2016. Lecture Notes in Computer Science(), vol 10523. Springer, Cham. https://doi.org/10.1007/978-3-319-68189-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68189-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68188-7

  • Online ISBN: 978-3-319-68189-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics