Skip to main content

Quality of Vegetable Products: Assessment of Physical, Chemical, and Microbiological Changes in Vegetable Products by Nondestructive Methods

  • Chapter
  • First Online:
  • 1280 Accesses

Part of the book series: Food Microbiology and Food Safety ((PRACT))

Abstract

This chapter focuses on quality and safety evaluation of the vegetable products using different sensing technologies, imaging processing, and chemometric methods. It provides an overview of the instruments used for evaluating the quality of vegetable products such as computer vision, multispectral imaging, near-infrared spectroscopy, and hyperspectral imaging (refer to Sect. 2). Then, the basic analysis methods and chemometrics are introduced in detail (Sect. 3), including image/spectral preprocessing and correction/calibration, feature and band extraction and sample selection, and analysis models and evaluation. Finally, the potential applications of the instruments and the basic analysis methods in vegetable product quality and safety analysis and control are explained (Sect. 4). The external qualities such as shape, size, color, texture, and defects; internal qualities such as soluble solid content (SSC), acid content, and internal defects; and microbiological changes such as microbial and fecal contamination are discussed in detail. Conclusions and future works are proposed (Sect. 5).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ANN:

Artificial neural network

ATR:

Attenuated total reflectance

AVIRIS:

Airborne visible/infrared imaging spectrometer

BD:

Band difference

BiPLS/FiPLS:

Backward/forward interval partial least squares

BR:

Band ratio

CARS:

Competitive adaptive reweighted sampling

CCD:

Charge-coupled device

CVS:

Computer vision system

DA:

Discriminant analysis

DCT:

Discrete cosine transform

DFT:

Discrete Fourier transform

DPLS:

Discriminant partial least squares

FTIR:

Fourier transform infrared

FTNIR:

Fourier transform near-infrared

GA:

Genetic algorithms

GAiPLS:

Genetic algorithm interval partial least squares

GAP:

Good agricultural practices

GMP:

Good manufacturing practices

HACCP:

Hazard analysis of critical control points

HIS:

Hyperspectral imaging system

HSI:

Hue, saturation, and intensity

ICA:

Independent component analysis

iPLS:

Interval partial least squares

ISO:

International Organization for Standardization

KNA:

Kernel nonlinear analysis

KNN:

Kernel neural network

KS:

Kennard–Stone

LDA:

Linear discriminant analysis

LS-SVM:

Least squares support vector machine

LV:

Latent variable

MLP:

Multilayer perceptron

MLR:

Multiple linear regression

MSC:

Multiplicative scatter correction

MWPLSR:

Moving window partial least squares regression

NASA:

National Aeronautics and Space Administration

NIRS:

Near-infrared spectroscopy

OSC:

Orthogonal signal correction

PCA:

Principal component analysis

PCR:

Principal component regression

PLS:

Partial least squares

PLSDA:

Partial least squares discriminant analysis

PLSR:

Partial least squares regression

r:

Correlation coefficient

RBF:

Radial basis function

RGB:

Red, green, blue

RMSEC:

Root mean square error of calibration

RMSECV:

Root mean square error of cross-validation

RMSEP:

Root mean square error of prediction

RMSEV:

Root mean square error of validation

ROC:

Receiver operating characteristic

RPD:

Residual predictive deviation

RS:

Random sampling

RSD:

Relative standard deviation

RT:

Regression trees

SAA:

Simulated annealing algorithm

SEC:

Standard error of calibration

SECV:

Standard error of cross-validation

SEM:

Scanning electron microscopy

SEP:

Standard error of prediction

SEV:

Standard error of validation

SID:

Spectral information divergence

SIMCA:

Soft independent modeling of class analogy

siPLS:

Synergy interval partial least squares

SNV:

Standard normal variate

SPA:

Successive projection algorithm

SPXY:

Sample set partitioning based on joint x–y distances

SSC:

Soluble solids content

UV:

Ultraviolet

UVE:

Elimination of uninformative variables

VIP:

Variable importance in projection

Vis/NIR:

Visible and near-infrared

WT:

Wavelet transformation

References

  • Alfatni MS, Shariff ARM, Abdullah MZ, Ben Saeed OM, Ceesay OM (2011) Recent methods and techniques of external grading systems for agricultural crops quality inspection—review. Int J Food Eng 7(3):291–297

    Article  Google Scholar 

  • Araújo MCU, Saldanha TCB, Galvã RKH, Yoneyama T, Chame HC, Visani V (2001) The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom Intel Lab Syst 57(2):65–73

    Article  Google Scholar 

  • Ariana DP, Lu RF, Guyer DE (2006) Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Comput Electron Agric 53(1):60–70

    Article  Google Scholar 

  • Balabin MR, Smirnov SV (2011) Variable selection in near-infrared spectroscopy: benchmarking of feature selection methods on biodiesel data. Anal Chim Acta 692(1–2):63–72

    Article  CAS  PubMed  Google Scholar 

  • Barnes R, Dhanoa M, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43(5):772–777

    Article  CAS  Google Scholar 

  • Barnes M, Duckett T, Cielniak G, Stroud G, Harper G (2010) Visual detection of blemishes in potatoes using minimalist boosted classifiers. J Food Eng 98(3):339–346

    Article  Google Scholar 

  • Baxes GA (1994) Digital image processing: principles and applications. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Brewer MT, Lang LX, Fujimura K, Dujmovic N, Gray S, van der Knaap E (2006) Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiol 141(1):15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosnan T, Sun DW (2004) Improving quality inspection of food products by computer vision - a review. J Food Eng 61(1):3–16

    Article  Google Scholar 

  • Cai W, Li Y, Shao X (2008) Avariable selection method based on uninformative variable elimination for multivariate calibration of near-infrared spectra. Chemom Intel Lab Syst 90(2):188–194

    Article  CAS  Google Scholar 

  • Centner V (2009) Multivariate approaches: UVE-PLS. Chem Biochem Data Anal 21:609–618

    Google Scholar 

  • Centner V, Massart DL, De Noord OE (1996) Elimination of uninformative variables for multivariate calibration. Anal Chem 68(21):3851–3858

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Chen YR, Tao Y, Wang CY, Kim MS, Lefcourt AM (2004) A novel integrated PCA and FLD method on hyperspectral image feature extraction for cucumber chllling damage inspection. Trans ASABE 47(4):1313–1320

    Article  Google Scholar 

  • Chong VK, Kondo N, Ninomiya K, Nishi T, Monta M, Namba K, Zhang Q (2008a) Feature extraction for eggplant fruit grading system using machine vision. Appl Eng Agric 24(5):675–684

    Article  Google Scholar 

  • Chong VK, Nishi T, Kondo N, Ninomiya K, Monta M, Namba K, Zhang Q, Shimizu H (2008b) Suface gloss measurement on eggplant fruit. Appl Eng Agric 24(6):877–883

    Article  Google Scholar 

  • Choudhary R, Bowser TJ, Weckler P, Maness NO, McGlynn W (2009) Rapid estimation of lycopene concentration in watermelon and tomato puree by fiber optic visible reflectance spectroscopy. Postharvest Biol Technol 52(1):103–109

    Article  CAS  Google Scholar 

  • Cubero S, Aleixos N, Molto E, Gomez-Sanchis J, Blasco J (2011) Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food Bioproc Tech 4(5):829–830

    Article  Google Scholar 

  • Davis AR, Fish WW, Perkins-Veazie P (2003) A rapid spectrophotometric method for analyzing lycopene content in tomato and tomato products. Postharvest Biol Technol 28(3):425–430

    Article  CAS  Google Scholar 

  • Du CJ, Sun DW (2004) Recent developments in the applications of image processing techniques for food quality evaluation. Trends Food Sci Technol 15(5):230–249

    Article  CAS  Google Scholar 

  • Elmasry G, Wang N, Elsayed A, Ngadi M (2007) Hyperspectral imaging for nondestructive determination of some quality attributes for strawberry. J Food Eng 81(1):98–107

    Article  CAS  Google Scholar 

  • ElMasry G, Cubero S, Molto E, Blasco J (2012) In-line sorting of irregular potatoes by using automated computer-based machine vision system. J Food Eng 112(1–2):60–68

    Article  Google Scholar 

  • Everard CD, Kim MS, Lee H (2014) A comparison of hyperspectral reflectance and fluorescence imaging techniques for detection of contaminants on spinach leaves. J Food Eng 143(6):139–145

    Article  CAS  Google Scholar 

  • Everard CD, Kim MS, Cho H, O’Donnell CP (2016) Hyperspectral fluorescence imaging using violet LEDs as excitation sources for fecal matter contaminate identification on spinach leaves. J Food Meas Charact 10(1):56–63

    Article  Google Scholar 

  • Fan S, Zhang B, Li J, Liu C, Huang W, Tian X (2016) Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Postharvest Biol Technol 121:51–61

    Article  Google Scholar 

  • Feng YZ, Sun DW (2012) Application of hyperspectral imaging in food safety inspection and control: a review. Crit Rev Food Sci Nutr 52(11):1039–1058

    Article  PubMed  Google Scholar 

  • Filho DHA, Galvao RKH, Araújo MCU, da Silva EC, Saldanha TCB, José GE, Rohwedder JJR (2004) A strategy for selecting calibration samples for multivariate modelling. Chemom Intel Lab Syst 72(1):83–91

    Article  CAS  Google Scholar 

  • Fu X, Ying Y (2016) Food safety evaluation based on near infrared spectroscopy and imaging: a review. Crit Rev Food Sci Nutr 56(11):1913–1924

    Article  CAS  PubMed  Google Scholar 

  • Galvao RKH, Araujo MCU, Jose GE, Pontes MJC, Silva EC, Saldanha TCB (2005) A method for calibration and validation subset partitioning. Talanta 67(4):736–740

    Article  CAS  PubMed  Google Scholar 

  • Ghasemi-Varnamkhasti M, Mohtasebi SS, Rodriguez-Mendez ML, Gomes AA, Araújo MCU, Galvão RKH (2012) Screening analysis of beer ageing using near infrared spectroscopy and the successive projections algorithm for variable selection. Talanta 89:286–291

    Article  CAS  PubMed  Google Scholar 

  • Goudarzi N, Goodarzi M, Araujo MCU, Galvao RKH (2009) QSPR modeling of soil sorption coefficients (Koc) of pesticides using SPA-ANN and SPA-MLR. J Agric Food Chem 57(15):7153–7158

    Article  CAS  PubMed  Google Scholar 

  • Goudarzi M, Goodarzi M, Arab Chamjangali M, Fatemi MH (2013) Application of a new SPA-SVM coupling method for QSPR study of electrophoretic mobilities of some organic and inorganic compounds. Chin Chem Lett 24(10):904–908

    Article  CAS  Google Scholar 

  • Gowen A, O’donnell C, Taghizadeh M, Cullen P, Frias J, Downey G (2008) Hyperspectral imaging combined with principal component analysis for bruise damage detection on white mushrooms (Agaricus bisporus). J Chemometr 22(3–4):259–267

    Article  CAS  Google Scholar 

  • Gowen AA, Taghizadeh M, O'Donnell CP (2009) Identification of mushrooms subjected to freeze damage using hyperspectral imaging. J Food Eng 93(1):7–12

    Article  Google Scholar 

  • Hahn F (2002) Fungal spore detection on tomatoes using spectral Fourier signatures. Biosyst Eng 81(3):249–259

    Article  Google Scholar 

  • Hahn F, Lopez I, Hernandez G (2004) Spectral detection and neural network discrimination of Rhizopus stolonifer spores on red tomatoes. Biosyst Eng 89(1):93–99

    Article  Google Scholar 

  • Ham J, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492–501

    Article  Google Scholar 

  • He HJ, Sun DW (2015) Microbial evaluation of raw and processed food products by visible/infrared, Raman and fluorescence spectroscopy. Trends Food Sci Technol 46(2):199–210

    Article  CAS  Google Scholar 

  • Heinemann PH, Pathare NP, Morrow CT (1996) An automated inspection station for machine-vision grading of potatoes. Mach Vis Appl 9(1):14–19

    Article  Google Scholar 

  • Hu MH, Dong QL, Liu BL, Opara UL (2016) Prediction of mechanical properties of blueberry using hyperspectral interactance imaging. Postharvest Biol Technol 115:122–131

    Article  Google Scholar 

  • Huang H, Yu H, Xu H, Ying Y (2008) Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: a review. J Food Eng 87(3):303–313

    Article  CAS  Google Scholar 

  • Ignat T, Schmilovitch Z, Feföldi J, Bernstein N, Steiner B, Egozi H, Hoffman A (2013) Nonlinear methods for estimation of maturity stage, total chlorophyll, and carotenoid content in intact bell peppers. Biosyst Eng 114(4):414–425

    Article  Google Scholar 

  • Jahns G, Møller Nielsen H, Paul W (2001) Measuring image analysis attributes and modelling fuzzy consumer aspects for tomato quality grading. Comput Electron Agric 31(1):17–29

    Article  Google Scholar 

  • Jie DF, Xie LJ, Fu XP, Rao XQ, Ying YB (2013) Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique. J Food Eng 118(4):387–392

    Article  Google Scholar 

  • Joint FAO/WHO Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, and World Health Organization (2003) Codex Alimentarius: food hygiene, basic texts. Food and Agriculture Org, Rome

    Google Scholar 

  • Kang S, Lee K, Son J, Kim MS (2011) Detection of fecal contamination on leafy greens by hyperspectral imaging. Int Congress Eng Food 1(1):953–959

    Google Scholar 

  • Kavdir I, Lu R, Ariana D, Ngouajio M (2007) Visible and near-infrared spectroscopy for nondestructive quality assessment of pickling cucumbers. Postharvest Biol Technol 44(2):165–174

    Article  CAS  Google Scholar 

  • Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11(1):137–148

    Article  Google Scholar 

  • Kleynen O, Leemans V, Destain MF (2005) Development of a multi-spectral vision system for the detection of defects on apples. J Food Eng 69(1):41–49

    Article  Google Scholar 

  • Kondo N, Chong VK, Ninomiya K, Ninomiya T, Monta M (2005) Application of NIR-color CCD camera to eggplant grading machine. In ASAE annual international meeting

    Google Scholar 

  • Kondo N, Ninomiya K, Kamata J, Chong V, Monta M, Ting K (2007) Eggplant grading system including rotary tray assisted machine vision whole fruit inspection. J Jpn Soc Agric Mach 69(1):68–77

    Google Scholar 

  • Leardi R, Gonzalez AL (1998) Genetic algorithms applied to feature selection in PLS regression: how and when to use them. Chemom Intel Lab Syst 41(2):195–207

    Article  CAS  Google Scholar 

  • Leardi R, Seasholtz MB, Pell RJ (2002) Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data. Anal Chim Acta 461(2):189–200

    Article  CAS  Google Scholar 

  • Leemans V, Destain MF (2004) A real-time grading method of apples based on features extracted from defects. J Food Eng 61(1):83–89

    Article  Google Scholar 

  • Li HD, Liang YZ, Xu QS, Cao DS (2009) Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal Chim Acta 648(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Li HD, Xu QS, Liang YZ (2012) Random frog: an efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification. Anal Chim Acta 740:20–26

    Article  CAS  PubMed  Google Scholar 

  • Li JB, Rao XQ, Wang FJ, Wu W, Ying YB (2013) Automatic detection of common surface defects on oranges using combined lighting transform and image ratio methods. Postharvest Biol Technol 82:59–69

    Article  Google Scholar 

  • Li JB, Guo ZM, Huang WQ, Zhang BH, Zhao CJ (2015a) Near-infrared spectra combining with CARS and SPA algorithms to screen the variables and samples for quantitatively determining the soluble solids content in strawberry. Spectrosc Spectr Anal 35(2):372–378

    CAS  Google Scholar 

  • Li MM, Zhang XQ, Ren J, Zhang LY, Ren J (2015b) Model optimization on rapid detection of beet sugar content by near infrared spectroscopy. J Food Saf Qual 6(8):3026–3029

    Google Scholar 

  • Lino ACL, Sanches J, Dal Fabbro IM (2008) Image processing techniques for lemons and tomatoes classification. Bragantia 67(3):785–789

    Article  Google Scholar 

  • Liu F, He Y (2009) Application of successive projections algorithm for variable selection to determine organic acids of plum vinegar. Food Chem 115(4):1430–1436

    Article  CAS  Google Scholar 

  • Liu YL, Chen YR, Wang CY, Chan DE, Kim MS (2005) Development of a simple algorithm for the detection of chilling injury in cucumbers from visible/near-infrared hyperspectral imaging. Appl Spectrosc 59(1):78–85

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen YR, Wang CY, Chan DE, Kim MS (2006) Development of hyperspectral imaging technique for the detection of chilling injury in cucumbers; spectral and image analysis. Appl Eng Agric 22(1):101–111

    Article  Google Scholar 

  • Liu F, He Y, Wang L, Pan HM (2007) Feasibility of the use of visible and near infrared spectroscopy to assess soluble solids content and pH of rice wines. J Food Eng 83(3):430–435

    Article  CAS  Google Scholar 

  • Liu F, He Y, Wang L (2008) Comparison of calibrations for the determination of soluble solids content and pH of rice vinegars using visible and short-wave near infrared spectroscopy. Anal Chim Acta 610(2):196–204

    Article  CAS  PubMed  Google Scholar 

  • López Camelo AF, Gómez PA (2004) Comparison of color indexes for tomato ripening. Hortic Bras 22(3):534–537

    Article  Google Scholar 

  • Lorente D, Aleixos N, Gomez-Sanchis J, Cubero S, Garcia-Navarrete OL, Blasco J (2012) Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioproc Tech 5(4):1121–1142

    Article  Google Scholar 

  • Louro AHF, Mendonça MM, Gonzaga A (2006) Classificação de tomates utilizando redes neurais artificiais. In proceedings of the II workshop de Visão Computacional, São Carlos, SP.

    Google Scholar 

  • Magwaza LS, Opara UL, Nieuwoudt H, Cronje PJR, Saeys W, Nicolaï B (2012) NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food Bioproc Tech 5(2):425–444

    Article  CAS  Google Scholar 

  • Mehmood T, Liland KH, Snipen L, Sæbø S (2012) A review of variable selection methods in partial least squares regression. Chemom Intel Lab Syst 118:62–69

    Article  CAS  Google Scholar 

  • Morimoto T, Takeuchi T, Miyata H, Hashimoto Y (2000) Pattern recognition of fruit shape based on the concept of chaos and neural networks. Comput Electron Agric 26(2):171–186

    Article  Google Scholar 

  • Nardo T, Shiroma-Kian C, Halim Y, Francis D, Rodriguez-Saona LE (2009) Rapid and simultaneous determination of lycopene and β-carotene contents in tomato juice by infrared spectroscopy. J Agric Food Chem 57(4):1105–1112

    Article  PubMed  CAS  Google Scholar 

  • Ngouajio M, Kirk W, Goldy R (2003) A simple model for rapid and nondestructive estimation of bell pepper fruit volume. HortScience 38(4):509–511

    Google Scholar 

  • Nicolaï BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J (2007) Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol Technol 46(2):99–118

    Article  Google Scholar 

  • NØgaard ASL, Wagner J, Nielsen JP, Munck L, Engelsen SB (2000) Interval partial least-squares regression (iPLS): a comparative chemometric study with an example from near-infrared spectroscopy. Appl Spectrosc 54(3):413–419

    Article  Google Scholar 

  • Noordam JC, Otten GW, Timmermans TJ, van Zwol BH (2000) High-speed potato grading and quality inspection based on a color vision system. In Electronic Imaging: International Society for Optics and Photonics, pp 206–217

    Google Scholar 

  • Novini AR (1995) The latest in vision technology in today’s food and beverage container manufacturing industry. Technical Papers-Society of Manufacturing Engineerings- All Series

    Google Scholar 

  • Pace B, Cefola M, Da Pelo P, Renna F, Attolico G (2014) Non-destructive evaluation of quality and ammonia content in whole and fresh-cut lettuce by computer vision system. Food Res Int 64:647–655

    Article  CAS  Google Scholar 

  • Patel KK, Kar A, Jha SN, Khan MA (2012) Machine vision system: a tool for quality inspection of food and agricultural products. J Food Sci Technol 49(2):123–141

    Article  PubMed  Google Scholar 

  • Pathare PB, Opara UL, Al-Said FA (2013) Colour measurement and analysis in fresh and processed foods: a review. Food Bioproc Tech 6(1):36–60

    Article  CAS  Google Scholar 

  • Pedreschi F, Segtnan VH, Knutsen SH (2010) On-line monitoring of fat, dry matter and acrylamide contents in potato chips using near infrared interactance and visual reflectance imaging. Food Chem 121(2):616–620

    Article  CAS  Google Scholar 

  • Pedro AMK, Ferreira MMC (2005) Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. Anal Chem 77(8):2505–2511

    Article  CAS  PubMed  Google Scholar 

  • Pedro AMK, Ferreira MMC (2007) Simultaneously calibrating solids, sugars and acidity of tomato products using PLS2 and NIR spectroscopy. Anal Chim Acta 595(1):221–227

    Article  CAS  PubMed  Google Scholar 

  • Penchaiya P, Bobelyn E, Verlinden BE, Nicolaï BM, Saeys W (2009) Non-destructive measurement of firmness and soluble solids content in bell pepper using NIR spectroscopy. J Food Eng 94(3):267–273

    Article  Google Scholar 

  • Pissard A, Pierna JAF, Baeten V, Sinnaeve G, Lognay G, Mouteau A, Dupont P, Rondia A, Lateur M (2013) Non-destructive measurement of vitamin c, total polyphenol and sugar content in apples using near-infrared spectroscopy. J Sci Food Agric 93(2):238–244

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Burks TF, Zhao X, Niphadkar N, Ritenour MA (2012) Development of a two-band spectral imaging system for real-time citrus canker detection. J Food Eng 108(1):87–93

    Article  Google Scholar 

  • Quilitzsch R, Baranska M, Schulz H, Hoberg E (2005) Fast determination of carrot quality by spectroscopy methods in the UV-VIS, NIR and IR range. J Appl Bot Food Qual 79(3):163–167

    CAS  Google Scholar 

  • Rady AM, Guyer DE (2015) Evaluation of sugar content in potatoes using NIR reflectance and wavelength selection techniques. Postharvest Biol Technol 103:17–26

    Article  CAS  Google Scholar 

  • Rajer-Kanduč K, Zupan J, Majcen N (2003) Separation of data on the training and test set for modelling: a case study for modelling of five colour properties of a white pigment. Chemom Intel Lab Syst 65(2):221–222

    Article  Google Scholar 

  • Razmjooy N, Mousavi BS, Soleymani F (2012) A real-time mathematical computer method for potato inspection using machine vision. Comput Math Appl 63(1):268–279

    Article  Google Scholar 

  • Rinnan Å, Berg FVD, Engelsen SB (2009) Review of the most common pre-processing techniques for near-infrared spectra. Trends Anal Chem 28(10):1201–1222

    Article  CAS  Google Scholar 

  • Shahin MA, Tollner EW, Gitatis RD, Sumner DR, Maw BW (2002) Classification of sweet onions based on internal defects using image processing and neural network techniques. Trans ASAE 45(5):1613–1618

    Google Scholar 

  • Shao XG, Wang F, Chen D, Su QD (2004) A method for nearinfrared spectral calibration of complex plant samples with wavelet transform and elimination of uninformative variables. Anal Bioanal Chem 378(5):1382–1387

    Article  CAS  PubMed  Google Scholar 

  • Shao Y, Bao Y, He Y (2011) Visible/near-infrared spectra for linear and nonlinear calibrations: a case to predict soluble solids contents and PH value in peach. Food Bioproc Tech 4(8):1376–1383

    Article  Google Scholar 

  • Shearer S, Payne F (1990) Color and defect sorting of bell peppers using machine vision. Trans ASAE 33(6):2045–2050

    Google Scholar 

  • Shi J, Zou X, Zhao J, Mao H (2011) Selection of wavelength for strawberry nir spectroscopy based on bipls combined with saa. J Infrared Millimeter Waves 30(5):458–462

    Article  Google Scholar 

  • Siripatrawana U, Makinob Y, Kawagoeb Y, Oshita S (2011) Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta 85(1):276–281

    Article  CAS  Google Scholar 

  • Sjöblom J, Svensson O, Josefson M (1998) An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemom Intel Lab Syst 44(1):229–244

    Article  Google Scholar 

  • Soares SFC, Gomes AA, Galvao AR, Araujo MCU, Galvao RKH (2013) The successive projections algorithm. TrAC Trends Anal Chem 42:84–98

    Article  CAS  Google Scholar 

  • Sun XD, Dong XL (2013) Rapid detection of reducing sugar for potato granules by near infrared spectroscopy. Transactions of the Chinese society of. Agri Eng 29(14):262–268

    CAS  Google Scholar 

  • Suthiluk P, Saranwong S, Kawano S, Numthuam S, Satake T (2008) Possibility of using near infrared spectroscopy for evaluation of bacterial contamination in shredded cabbage. Int J Food Sci Technol 43(1):160–165

    Article  CAS  Google Scholar 

  • Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Article  Google Scholar 

  • Taghizadeh M, Gowen AA, O'Donnell CP (2011) The potential of visible-near infrared hyperspectral imaging to discriminate between casing soil, enzymatic browning and undamaged tissue on mushroom (Agaricus bisporus) surfaces. Comput Electron Agric 77(1):74–80

    Article  Google Scholar 

  • Tao Y, Heinemann P, Varghese Z, Morrow C, Sommer H (1995) Machine vision for color inspection of potatoes and apples. Trans ASABE 38(5):1555–1561

    Article  Google Scholar 

  • Teena M, Manickavasagan A, Mothershaw A, El Hadi S, Jayas DS (2013) Potential of machine vision techniques for detecting fecal and microbial contamination of food products: a review. Food Bioproc Tech 6(7):1621–1634

    Article  Google Scholar 

  • United Nations (2007) Safety and quality of fresh fruit and vegetables: a training manual for trainers. http://unctad.org/en/docs/ditccom200616_en.pdf

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  • Vızhányó T, Felföldi J (2000) Enhancing colour differences in images of diseased mushrooms. Comput Electron Agric 26(2):187–198

    Article  Google Scholar 

  • Wang HH, Li CY (2011) Onion quality assessment using diffuse reflectance hyperspectral images with a shape correction algorithm. 2011 Louisville, Kentucky, August 7–10, 2011, 1110708. https://doi.org/10.13031/2013.39308

  • Wang HH, Sun DW (2002) Correlation between cheese meltability determined with a computer vision method and with Arnott and Schreiber tests. J Food Sci 67(2):745–749

    Article  CAS  Google Scholar 

  • Wang J, Kim KH, Kim S, Yong SK, Li QX, Jun S (2010) Simple quantitative analysis of Escherichia coli K-12 internalized in baby spinach using fourier transform infrared spectroscopy. Int J Food Microbiol 144(1):147–151

    Article  PubMed  Google Scholar 

  • Wang W, Li C, Tollner EW, Gitaitis RD, Rains GC (2012) Shortwave infrared hyperspectral imaging for detecting sour skin (Burkholderiacepacia)-infected onions. J Food Eng 109(1):38–48

    Article  Google Scholar 

  • Wang WL, Li CY, Gitaitis RD (2014) Optical properties of healthy and diseased onion tissues in the visible and near-infrared spectral region. Trans ASABE 57(6):1771–1782

    Google Scholar 

  • Wang H, Peng J, Xie C, Bao Y, He Y (2015) Fruit quality evaluation using spectroscopy technology: a review. Sensors 15(5):11889–11927

    Article  PubMed  PubMed Central  Google Scholar 

  • Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intel Lab Syst 58(2):109–130

    Article  CAS  Google Scholar 

  • Workman JJ Jr (1992) In: Burns DA, Ciurczak EW (eds) Handbook of near-infrared analysis. Marcel Dekker, Inc., New York, pp 274–276

    Google Scholar 

  • Wu D, Sun DW (2013) Colour measurements by computer vision for food quality control - a review. Trends Food Sci Technol 29(1):5–20

    Article  CAS  Google Scholar 

  • Wu D, Wu HX, Cai JB (2009) Classifying the species of exopalaemon by using visible and near infrared spectra with uninformative variable elimination and successive projections algorithm. J Infrared Millimeter Waves 28(6):423–427

    Article  Google Scholar 

  • Wu D, Shi H, He Y, Yu XJ, Bao YD (2013) Potential of hyperspectral imaging and multivariate analysis for rapid and non-invasive detection of gelatin adulteration in prawn. J Food Eng 119(3):680–686

    Article  CAS  Google Scholar 

  • Xie LJ, Ying YB, Lin HJ, Zhou Y, Niu XY (2008) Nondestructive determination of soluble solids content and pH in tomato juice using NIR transmittance spectroscopy. Sens Instrum Food Qual 2(2):111–115

    Article  Google Scholar 

  • Xie LJ, Ying YB, Lin HJ, Zhou Y, Niu XY (2008) Nondestructive determination of soluble solids content and pH in tomato juice using NIR transmittance spectroscopy. Sens Instrum Food Qual 2(2):111–115

    Google Scholar 

  • Xu HR, Qi B, Sun T, Fu XP, Ying YB (2012) Variable selection in visible and near-infrared spectra: application to on-line determination of sugar content in pears. J Food Eng 109(1):142–147

    Article  CAS  Google Scholar 

  • Yang Y, Ren J, Zhang XQ, Li Y, Li MM (2014) Rapid determination of beet sugar content using near infrared spectroscopy. Spectrosc Spectr Anal 34(10):2728–2731

    CAS  Google Scholar 

  • Zhang B, Huang W, Li J, Zhao C, Fan S, Wu J, Liu C (2014) Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: a review. Food Res Int 62:326–343

    Article  Google Scholar 

  • Zheng CX, Sun DW, Zheng LY (2006) Recent developments and applications of image features for food quality evaluation and inspection - a review. Trends Food Sci Technol 17(12):642–655

    Article  CAS  Google Scholar 

  • Zou XB, Zhao JW, Malcolm JW, Povey MH, Mao HP (2010) Variables selection methods in near- infrared spectroscopy. Anal Chim Acta 667(1):14–32

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqian Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, W., Li, J., Zhang, B., Fan, S. (2018). Quality of Vegetable Products: Assessment of Physical, Chemical, and Microbiological Changes in Vegetable Products by Nondestructive Methods. In: Pérez-Rodríguez, F., Skandamis, P., Valdramidis, V. (eds) Quantitative Methods for Food Safety and Quality in the Vegetable Industry. Food Microbiology and Food Safety(). Springer, Cham. https://doi.org/10.1007/978-3-319-68177-1_6

Download citation

Publish with us

Policies and ethics