Skip to main content

Getting to Mars

  • Chapter
  • First Online:
The Design and Engineering of Curiosity

Part of the book series: Springer Praxis Books ((SPACEE))

  • 2845 Accesses

Abstract

Mars launch opportunities happen about every 26 months, as Earth begins to approach Mars from behind on its faster inside track around the Sun. The earliest MSL could launch was November 25, 2011; any earlier, and it would arrive at Mars with too much speed for the entry, descent, and landing system to dissipate. The latest it could launch was December 18; any later, and the Atlas V 541 rocket wouldn’t have enough thrust to deliver the spacecraft to its rendezvous point with Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 37.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Details of the launch and cruise events throughout this section are from Abilleira (2013)

  2. 2.

    Abilleira (2013)

  3. 3.

    Allen Chen, personal communication, email dated July 1, 2016, correcting numbers published before launch

  4. 4.

    Bhandari et al (2011)

  5. 5.

    Abilleira (2013)

  6. 6.

    JPL (2012a)

  7. 7.

    The story about how the navigators pulled off the first Trajectory Correction Maneuver was shared with me in an email by Rob Manning on January 8, 2015, and corrects timeline errors he made in his book, Mars Rover Curiosity

  8. 8.

    NASA (2011c)

  9. 9.

    JPL (2012b)

  10. 10.

    Martin-Mur et al (2012)

  11. 11.

    Martin-Mur et al (2014)

  12. 12.

    Martin-Mur et al (2014)

  13. 13.

    Table data are from Abilleira, 2013. For a detailed accounting of the nature and reasons of all the cruise turns and calibrations, read Martin-Mur et al (2014)

  14. 14.

    Chang (2012)

  15. 15.

    Guy Webster, personal communication, email dated May 17, 2017

  16. 16.

    Chen et al (2014)

  17. 17.

    Martin-Mur et al (2014)

  18. 18.

    Abilleira (2013)

  19. 19.

    The details of EDL telecommunications in this section are based on Schratz et al (2014)

  20. 20.

    Schratz et al (2014)

  21. 21.

    Edquist K et al (2009)

  22. 22.

    Allen Chen, personal communication, email dated July 1, 2016, correcting numbers published before the launch

  23. 23.

    Little et al (2013)

  24. 24.

    McEwen A (2012)

  25. 25.

    Abilleira and Shidner (2012)

  26. 26.

    Way et al (2013)

  27. 27.

    Allen Chen, personal communication, email dated February 24, 2016

  28. 28.

    Martin-Mur et al (2014)

  29. 29.

    Mendeck and Craig McGrew (2014)

  30. 30.

    Bose et al (2013)

  31. 31.

    Little et al (2013)

  32. 32.

    Mendeck and Craig McGrew (2014)

  33. 33.

    Mendeck and Craig McGrew (2014)

  34. 34.

    Martin-Mur et al (2014)

  35. 35.

    Way et al (2013)

  36. 36.

    Cruz et al (2014)

  37. 37.

    Baker et al (2014)

  38. 38.

    Way et al (2013)

  39. 39.

    Cruz et al (2014)

  40. 40.

    Hoffman et al (2007)

  41. 41.

    Pearlman (2017)

  42. 42.

    Cruz et al (2014)

  43. 43.

    Karlgaard et al (2014)

  44. 44.

    Chen and Pollard (2014)

  45. 45.

    Steltzner et al (2010)

  46. 46.

    Christian Schaller, personal communication, email dated February 17, 2016

  47. 47.

    Karlgaard et al (2014)

  48. 48.

    Steltzner et al (2010)

  49. 49.

    Way et al (2013)

  50. 50.

    Sell et al (2014)

  51. 51.

    Jordan (2012)

  52. 52.

    Gallon (2012)

  53. 53.

    Sell et al (2014)

  54. 54.

    Jordan (2012)

  55. 55.

    Way et al (2013)

  56. 56.

    Manning and Simon (2014)

  57. 57.

    Way et al (2013)

  58. 58.

    Baker et al (2014)

  59. 59.

    This was explained at the August 6, 2012 post-landing press briefing

  60. 60.

    Baker et al (2014)

  61. 61.

    NASA (2012b)

  62. 62.

    Way et al (2013)

  63. 63.

    John Grotzinger told me this after the end of the press briefing on August 6, 2012

REFERENCES

  • Abilleira F (2013) 2011 Mars Science Laboratory trajectory reconstruction and performance from launch through landing. Paper presented to the 23rd AAS/AIAA Spaceflight Mechanics Meeting, 10–14 Feb 2013, Kauai, Hawaii, USA

    Google Scholar 

  • Abilleira F and Shidner J (2012) Entry, descent, and landing communications for the 2011 Mars Science Laboratory. Paper presented to the AIAA Guidance, Navigation, and Control Conference, 13–16 Aug 2012, Minneapolis, Minnesota, USA

    Google Scholar 

  • Baker R et al (2014) Mars Science Laboratory Descent-Stage Integrated Propulsion Subsystem: Development and flight performance. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32788

    Google Scholar 

  • Beck R et al (2010) The evolution of the Mars Science Laboratory heatshield (part III). Presentation to the 7th International Planetary Probe Workshop, Barcelona, Spain, 16 Jun 2010.

    Google Scholar 

  • Bhandari P et al (2011) Mars Science Laboratory Launch Pad Thermal Control. Paper presented to the 41st International Conference on Environmental Systems, 17–21 Jul 2011, Portland, Oregon, USA

    Google Scholar 

  • Bose D et al (2013) Initial assessment of Mars Science Laboratory heatshield instrumentation and flight data. Paper presented to the 51st AIAA Aerospace Sciences Meeting, 7–10 Jan 2013, Grapevine, Texas, USA, DOI: 10.2514/6.2013-908, DOI: 10.2514/6.2013-908

    Google Scholar 

  • Bose D et al (2014) Reconstruction of aerothermal environment and heat shield response of Mars Science Laboratory. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32783

    Google Scholar 

  • Chang K (2012) Simulated Space ‘Terror’ Offers NASA an Online Following. The New York Times 11 Jul 2012, p. A14

    Google Scholar 

  • Chen A et al (2014) Reconstruction of atmospheric properties from Mars Science Laboratory entry, descent, and landing. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32708

    Google Scholar 

  • Chen C and Pollard B (2014) Radar terminal descent sensor performance during Mars Science Laboratory landing. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32641

    Google Scholar 

  • Cruz J et al (2014) Reconstruction of the Mars Science Laboratory Parachute Performance. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32816

    Google Scholar 

  • Edquist K et al (2009) Aerothermodynamic design of the Mars Science Laboratory heatshield. Paper presented to the 41st AIAA Thermophysics Conference, 22–25 Jun 2009, San Antonio, Texas, USA, DOI: 10.2514/6.2009-4075

    Google Scholar 

  • Edquist K et al (2009) Aerothermodynamic design of the Mars Science Laboratory backshell and parachute cone. Paper presented to the 41st AIAA Thermophysics Conference, 22–25 Jun 2009, San Antonio, Texas, USA, DOI: 10.2514/6.2009-4078

    Google Scholar 

  • Gallon J (2012) Verification and validation testing of the Bridle and Umbilical Device for Mars Science Laboratory. Paper presented to the 2012 IEEE Aerospace conference, 3–10 Mar 2012, Big Sky, Montana, USA, DOI: 10.1109/AERO.2012.6187289

    Google Scholar 

  • Hoffman P et al (2007) Preliminary design of the Cruise, Entry, Descent, and Landing Mechanical Subsystem for MSL. Paper presented at the 2007 IEEE Aerospace Conference, 3–10 Mar 2007, Big Sky, Montana, USA, DOI: 10.1109/AERO.2007.352826

    Google Scholar 

  • Jordan E (2012) Mars Science Laboratory differential restraint: The devil is in the details. Paper presented at the 41st Aerospace Mechanisms Symposium, May 16–18, 2012, Pasadena, California, USA

    Google Scholar 

  • JPL (2012a) Spacecraft Computer Issue Resolved. http://mars.jpl.nasa.gov/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1206. Status report dated 9 Feb 2012, accessed 7 Jan 2015

  • JPL (2012b) Mars-Bound NASA Craft Adjusts Path, Tests Instruments. http://mars.nasa.gov/msl/news/whatsnew/index.cfm?FuseAction=ShowNews&NewsID=1211. Status report dated 26 Mar 2012, accessed 11 Feb 2016

  • Karlgaard C et al (2014) Mars Science Laboratory Entry Atmospheric Data System Trajectory and Atmosphere Reconstruction. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32770

    Google Scholar 

  • Kornfeld R et al (2014) Verification and validation of the Mars Science Laboratory/Curiosity rover entry, descent, and landing system. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32680

    Google Scholar 

  • Little A et al (2013) The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI): hardware performance and data reconstruction. Paper presented to the 36th AAS Guidance and Control Conference, 1–6 Feb 2013; Breckenridge, CO, USA

    Google Scholar 

  • Manning R and Simon W (2014) Mars Rover Curiosity. Smithsonian Books, Washington, DC

    Google Scholar 

  • Martin-Mur T et al (2012) Mars Science Laboratory Navigation Results. Paper presented at the 23rd International Symposium on Space Flight Dynamics, 29 Oct–2 Nov 2012, Pasadena, CA, USA

    Google Scholar 

  • Martin-Mur T et al (2014) Mars Science Laboratory interplanetary navigation. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32631

    Google Scholar 

  • McEwen A (2012) Impacts from MSL tungsten blocks and cruise stage. http://www.uahirise.org/ESP_029245_1755, image caption dated 5 Dec 2012, accessed 7 Jan 2015

  • Mendeck G and Craig McGrew L (2014) Entry guidance design and postflight performance for 2011 Mars Science Laboratory mission. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32737

    Google Scholar 

  • NASA (2011a) Mars Science Laboratory Launch. Press kit dated Nov 2011

    Google Scholar 

  • NASA (2011b) NASA Ready for November Launch of Car-Size Mars Rover. Press release dated 19 Nov 2011

    Google Scholar 

  • NASA (2011c) NASA Mars-Bound Rover Begins Research In Space. Press release dated 13 Dec 2011

    Google Scholar 

  • NASA (2012a) Mars Science Laboratory Landing. Press kit dated Jul 2012

    Google Scholar 

  • NASA (2012b) First words of safe landing on Mars - Tango Delta Nominal. http://www.nasa.gov/mission_pages/msl/news/msl20120821f.html posted 21 Aug 2012, accessed 23 Feb 2016

  • Novak K et al (2016) Thermal response of the Mars Science Laboratory spacecraft during entry, descent, and landing. Paper presented to the 46th International Conference on Environmental Systems, 10–14 Jul 2016, Vienna, Austria

    Google Scholar 

  • Pearlman R (2017) From space plane to sky crane: How part of a space shuttle landed a rover on Mars. http://www.planetary.org/blogs/guest-blogs/2017/0804-from-space-plane-to-sky-crane.html article dated 5 Aug 2017, accessed 27 Oct 2017.

  • Pollard B (2012) Radar Terminal Descent Sensor (TDS). Presentation given to the JPL Section 334 Forum, 3 Aug 2012, Pasadena, CA, USA

    Google Scholar 

  • Schratz B et al (2014) Telecommunications performance during entry, descent, and landing of the Mars Science Laboratory. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32790

    Google Scholar 

  • Sell S et al (2014) Powered flight design and performance summary for the Mars Science Laboratory mission. Journal of Spacecraft and Rockets 51:4, DOI: 10.2514/1.A32682

    Google Scholar 

  • Steltzner A et al (2010) Mars Science Laboratory entry, descent, and landing system overview. Revised version of Steltzner A et al (2006) Mars Science Laboratory entry, descent, and landing system. Paper presented at the 2006 IEEE Aerospace Conference, 4–11 Mar 2006, Big Sky, Montana, USA

    Google Scholar 

  • United Launch Alliance (2011) Atlas V MSL Mission Overview. Press kit.

    Google Scholar 

  • Wallace M (2012) Curiosity: The Next Mars Rover. Presentation to the Royal Aeronautical Society, Applied Aerodynamics Group Conference, 17–19 Jul 2012, London, UK

    Google Scholar 

  • Way D et al (2013) Assessment of the Mars Science Laboratory entry, descent, and landing simulation. Paper presented at 23rd AAS/AIAA Space Flight Mechanics Meeting, 10–14 Feb 2013, Kauai, Hawaii, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lakdawalla, E. (2018). Getting to Mars. In: The Design and Engineering of Curiosity. Springer Praxis Books(). Springer, Cham. https://doi.org/10.1007/978-3-319-68146-7_2

Download citation

Publish with us

Policies and ethics