Data Provenance Model for Internet of Things (IoT) Systems

  • Habeeb Olufowobi
  • Robert Engel
  • Nathalie Baracaldo
  • Luis Angel D. Bathen
  • Samir Tata
  • Heiko Ludwig
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10380)

Abstract

Internet of Things (IoT) systems and applications are increasingly deployed for critical use cases and therefore exhibit an increasing need for dependability. Data provenance deals with the recording, management and retrieval of information about the origin and history of data. We propose that the introduction of data provenance concepts into the IoT domain can help create dependable and trustworthy IoT systems by recording the lineage of data from basic sensor readings up to complex derived information created by software agents. In this paper, we present a data provenance model for IoT systems that is geared towards providing a generic mechanism for assuring the correctness and integrity of IoT applications and thereby reinforcing their trustworthiness and dependability for critical use cases.

References

  1. 1.
    Bauer, S., Schreckling, D.: Data provenance in the internet of things. In: EU Project COMPOSE, Conference Seminar (2013)Google Scholar
  2. 2.
    Buneman, P., Khanna, S., Wang-Chiew, T.: Why and where: a characterization of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2001). doi: 10.1007/3-540-44503-X_20 CrossRefGoogle Scholar
  3. 3.
    Compton, M., et al.: The ssn ontology of the w3c semantic sensor network incubator group. Web Semant. Sci. Serv. Agents WWW 17, 25–32 (2012)CrossRefGoogle Scholar
  4. 4.
    Cuevas-Vicenttín, V., et al.: Provone: a prov extension data model for scientific workflow provenance (2015)Google Scholar
  5. 5.
    Garrijo, D., Gil, Y.: P-plan ontology (2012)Google Scholar
  6. 6.
    Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.: An architecture for provenance systems. Technical report (2006)Google Scholar
  7. 7.
    Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (iot): a vision, architectural elements, and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660 (2013)CrossRefGoogle Scholar
  8. 8.
    Lim, H.S., Moon, Y.S., Bertino, E.: Provenance-based trustworthiness assessment in sensor networks. In: Seventh International Workshop on Data Management for Sensor Networks, pp. 2–7. DMSN 2010. ACM, New York (2010)Google Scholar
  9. 9.
    Missier, P., Dey, S., Belhajjame, K., Cuevas-Vicenttín, V., Ludäscher, B.: D-prov: extending the prov provenance model with workflow structure. In: 5th USENIX Workshop on the Theory and Practice of Provenance (TaPP 13) (2013)Google Scholar
  10. 10.
    Moreau, L., et al.: The open provenance model core specification (v1. 1). Future Gener. Comput. Syst. 27(6), 743–756 (2011)CrossRefGoogle Scholar
  11. 11.
    Moreau, L., et al.: Prov-dm: the prov data model. w3c recommendation (2013)Google Scholar
  12. 12.
    Muniswamy-Reddy, K.K., Holland, D.A., Braun, U., Seltzer, M.I.: Provenance-aware storage systems. In: USENIX Annual Technical Conference, pp. 43–56 (2006)Google Scholar
  13. 13.
    Simmhan, Y.L., Plale, B., Gannon, D.: A survey of data provenance in e-science. SIGMOD Rec. 34(3), 31–36 (2005)CrossRefGoogle Scholar
  14. 14.
    Tan, W.C., et al.: Provenance in databases: past, current, and future. IEEE Data Eng. Bull. 30(4), 3–12 (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Habeeb Olufowobi
    • 2
  • Robert Engel
    • 1
  • Nathalie Baracaldo
    • 1
  • Luis Angel D. Bathen
    • 1
  • Samir Tata
    • 1
  • Heiko Ludwig
    • 1
  1. 1.Almaden Research Center IBM ResearchSan JoseUSA
  2. 2.Howard UniversityWashingtonUSA

Personalised recommendations