Towards Quality Guided Data Integration on Multi-cloud Settings

  • Daniel A. S. Carvalho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10380)


This PhD project addresses data integration considering data quality (freshness, provenance, cost, availability) properties in a multi-cloud context. In fact, in a multi-cloud context, data is made available through a huge offer of services deployed on different clouds with heterogeneous quality of service features. By users who thank to their contracts with the clouds expressed by traditional SLA according to their rights. Consequently, data integration in this context needs to take into account these new constraints. The aim of our work is to revisit previously proposed data integration solutions in order to adapt them to the multi-cloud context. Our solution consists in defining over the clouds a layer that provides a reasoning on the best services combination that meets services and user constraints and willings, the best way to deploy the integration process. This layer should let further data integration easier thank to the definition of a new kind of SLA called Integration SLA. This paper gives a model-oriented vision of our proposal.


Data integration Query rewriting algorithm Cloud computing SLA 


  1. 1.
    Ba, C., Costa, U., Halfeld-Ferrari, M., Ferre, R., Musicante, M.A., Peralta, V., Robert, S.: Preference-driven refinement of service compositions. In: Proceedings of CLOSER 2014 International Conference on Cloud Computing and Services Science (2014)Google Scholar
  2. 2.
    Barhamgi, M., Benslimane, D., Medjahed, B.: A query rewriting approach for web service composition. IEEE Trans. Serv. Comput. Serv. Comput. (2010)Google Scholar
  3. 3.
    Batini, C., Scannapieco, M.: Data Quality Issues in Data Integration Systems, pp. 133–160. Springer, Heidelberg (2006). doi: 10.1007/3-540-33173-5_6
  4. 4.
    Benouaret, K., Benslimane, D., Hadjali, A., Barhamgi, M.: FuDoCS: a web service composition system based on fuzzy dominance for preference query answering. In: 37th International Conference on Very Large Data Bases (VLDB 2011) (2011)Google Scholar
  5. 5.
    Carvalho, D.A.S., Souza Neto, P.A., Ghedira-Guegan, C., Bennani, N., Vargas-Solar, G.: Rhone: a quality-based query rewriting algorithm for data integration. In: Ivanović, M., Thalheim, B., Catania, B., Schewe, K.-D., Kirikova, M., Šaloun, P., Dahanayake, A., Cerquitelli, T., Baralis, E., Michiardi, P. (eds.) ADBIS 2016. CCIS, vol. 637, pp. 80–87. Springer, Cham (2016). doi: 10.1007/978-3-319-44066-8_9 CrossRefGoogle Scholar
  6. 6.
    Correndo, G., Salvadores, M., Millard, I., Glaser, H., Shadbolt, N.: SPARQL query rewriting for implementing data integration over linked data. In: Proceedings of the 1st International Workshop on Data Semantics - DataSem 2010. ACM, New York (2010)Google Scholar
  7. 7.
    Costa, U.S., Ferrari, M.H., Musicante, M.A., Robert, S.: Automatic refinement of service compositions. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp. 400–407. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39200-9_33 CrossRefGoogle Scholar
  8. 8.
    ElSheikh, G., ElNainay, M.Y., ElShehaby, S., Abougabal, M.S.: SODIM: service oriented data integration based on mapreduce. Alexandria Eng. J. (2013)Google Scholar
  9. 9.
    Halevy, A.Y.: Answering queries using views: a survey. VLDB J. 10(4), 270–294 (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. PODS 2002, pp. 233–246. ACM, New York (2002)Google Scholar
  11. 11.
    Scannapieco, M., Virgillito, A., Marchetti, C., Mecella, M., Baldoni, R.: The daquincis architecture: a platform for exchanging and improving data quality in cooperative information systems. Inf. Syst. 29(7), 551–582 (2004)CrossRefGoogle Scholar
  12. 12.
    Tian, Y., Song, B., Park, J., Huh, E.-N.: Inter-cloud data integration system considering privacy and cost. In: Pan, J.-S., Chen, S.-M., Nguyen, N.T. (eds.) ICCCI 2010. LNCS, vol. 6421, pp. 195–204. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16693-8_22 CrossRefGoogle Scholar
  13. 13.
    Yau, S.S., Yin, Y.: A privacy preserving repository for data integration across data sharing services. IEEE T. Services Computing 1 (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Université Jean Moulin Lyon 3, Centre de Recherche Magellan, IAELyonFrance

Personalised recommendations