A Migration Approach for Cloud Service Composition

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10380)


Service-oriented computing offers an attractive platform for the provisioning of existing resources without investing in new infrastructure. Providers who expect to benefit from the web may bring explosive number of web services. As a result, time and space required to find a solution may be insufferable. To alleviate this problem, we propose to solve service composition problem with a database. In our previous work, we have proposed a relational database-based approach for automated service composition. We want to utilize existing resources on clouds. NoSQL databases are suitable for using as cloud data management systems. However, it is challenging to migrate relational databases to highly scalable NoSQL databases on clouds. The objective of this research project is to extend our work to cloud service composition.


Cloud computing Web service composition QoS 


  1. 1.
    Web ontology language for web services.
  2. 2.
  3. 3.
    Cui, L., Kumara, S., Lee, D.: Scenario analysis of web service composition based on multi-criteria mathematical goal programming. Serv. Sci. 3(4), 280–303 (2011)CrossRefGoogle Scholar
  4. 4.
    Dou, W., Zhang, X., Liu, J., Chen, J.: Hiresome-ii: towards privacy-aware cross-cloud service composition for big data applications. IEEE Trans. Parallel Distrib. Syst. 26(2), 455–466 (2015)CrossRefGoogle Scholar
  5. 5.
    He, W., Xu, L.: A state-of-the-art survey of cloud manufacturing. Int. J. Comput. Integr. Manuf. 28(3), 239–250 (2015)CrossRefGoogle Scholar
  6. 6.
    Jiang, W., Zhang, C., Huang, Z., Chen, M., Hu, S., Liu, Z.: Qsynth: a tool for QoS-aware automatic service composition. In: 2010 IEEE International Conference on Web Services (ICWS), pp. 42–49, July 2010Google Scholar
  7. 7.
    Kofler, K., ul Haq, I., Schikuta, E.: A parallel branch and bound algorithm for workflow QoS optimization. In: International Conference on Parallel Processing. ICPP 2009, pp. 478–485, September 2009Google Scholar
  8. 8.
    Li, J., Yan, Y., Lemire, D.: Full solution indexing for top-k web service composition. IEEE Trans. Serv. Comput. PP(99), 1–13 (2016)Google Scholar
  9. 9.
    Li, J., Yan, Y., Lemire, D.: Full solution indexing using database for QOS-aware web service composition. In: 2014 IEEE 11th International Conference on Services Computing (SCC), pp. 99–106, June 2014Google Scholar
  10. 10.
    Li, J., Yan, Y., Lemire, D.: A web service composition method based on compact k2-trees. In: 2015 IEEE International Conference on Services Computing (SCC), pp. 403–410 (2015)Google Scholar
  11. 11.
    Pandey, S., Karunamoorthy, D., Buyya, R.: Workflow engine for clouds. In: Cloud Computing: Principles and Paradigms, pp. 321–344 (2011)Google Scholar
  12. 12.
    Rimal, B.P., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems. In: INC, IMS and IDC, pp. 44–51 (2009)Google Scholar
  13. 13.
    Rodriguez-Mier, P., Mucientes, M., Lama, M.: A dynamic QoS-aware semantic web service composition algorithm. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 623–630. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34321-6_48 CrossRefGoogle Scholar
  14. 14.
    Yan, Y., Chen, M.: Anytime QoS-aware service composition over the GraphPlan. SOCA 9(1), 1–19 (2015). doi: 10.1007/s11761-013-0134-6
  15. 15.
    Yan, Y., Chen, M., Yang, Y.: Anytime QoS optimization over the plangraph for web service composition. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing. SAC 2012, pp. 1968–1975. ACM (2012)Google Scholar
  16. 16.
    Ye, Z., Bouguettaya, A., Zhou, X.: QoS-aware cloud service composition based on economic models. In: Liu, C., Ludwig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 111–126. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-34321-6_8 CrossRefGoogle Scholar
  17. 17.
    Zeng, C., Guo, X., Ou, W., Han, D.: Cloud computing service composition and search based on semantic. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) CloudCom 2009. LNCS, vol. 5931, pp. 290–300. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10665-1_26 CrossRefGoogle Scholar
  18. 18.
    Zou, G., Chen, Y., Xiang, Y., Huang, R., Xu, Y.: AI planning and combinatorial optimization for web service composition in cloud computing. In: Proceedings of the International Conference on Cloud Computing and Virtualization. CCV Conference 2010, pp. 28–35 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Deptartment of Computer Science and Software EngineeringConcordia UniversityMontrealCanada

Personalised recommendations