A Spatio Temporal Texture Saliency Approach for Object Detection in Videos

  • A. SasithradeviEmail author
  • S. Mohamed Mansoor Roomi
  • I. Sanofer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)


Detecting what attracts human attention is one of the vital tasks for visual processing. Saliency detection finds out the location of foci of attention on an outstanding object in image/video sequences. However, temporal information in videos play major role in human visual perception in locating salient objects. This paper presents a novel approach to detect salient object in a video using spatio-temporal textural saliency which also includes temporal information, an important aspect in videos. In this work, the context driven static saliency extracted from Lab color space in XY plane is combined with the local phase quantization on three orthogonal planes (LPQ-TOP) driven dynamic saliency to detect the spatio-temporal saliency in videos. The dynamic saliency is obtained by fusing two temporal saliencies extracted from XT-plane and YT-plane using LPQ texture feature, which extracts the temporal salient region. This approach is evaluated on Benchmark dataset and the result shows that the proposed saliency approach yields promising performance.


Local phase quantization Orthogonal plane Spatio-temporal saliency Static saliency Dynamic saliency 


  1. 1.
    Gray, C., James, S., Collomosse, J.: A particle filtering approach to salient video object localization. In: IEEE International Conference on Image Processing, Paris, pp. 194–198 (2014)Google Scholar
  2. 2.
    Kannan, R., Ghinea, G., Swaminathan, S.: Discovering salient object from videos using spatio temporal salient region detection. Sig. Process. Image Commun. 36, 154–178 (2015)CrossRefGoogle Scholar
  3. 3.
    Li, H., Wang, Y., Liu, W.: Moving object detection based on HFT and dynamic fusion. In: Proceedings of the International Conference on Signal Processing, China, pp. 895–899 (2014)Google Scholar
  4. 4.
    Luo, Y., Yua, J.: Salient object detection in videos by optimal spatio-temporal path discovery. In: 21st ACM International Conference on Multimedia, Newyork, USA, pp. 509–512 (2013)Google Scholar
  5. 5.
    Mahapatra, D., Gilani, S.O., Saini, M.K.: Coherency based spatio-temporal saliency detection for video object segmentation. IEEE J. Sel. Top. Sig. Process. 8(3), 454–462 (2014)CrossRefGoogle Scholar
  6. 6.
    Mauthner, T., Possegger, H., Waltner, G., Bischof, H.: Encoding based saliency detection for videos and images. In: 28th International Conference on Computer Vision and Pattern Recognition, Bosto, MA, pp. 2494–2502 (2015)Google Scholar
  7. 7.
    Borji, A., Sihite, D.N., Itti, L.: Salient object detection: a benchmark. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 414–429. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-33709-3_30 CrossRefGoogle Scholar
  8. 8.
    Muthuswamy, K., Rajan, D.: Particle filter framework for salient object detection in videos. IET Comput. Vis. 9, 428–438 (2015)CrossRefGoogle Scholar
  9. 9.
    Zou, W., Komodakis, N.: HARF: hierarchy associated rich features for salient object detection. In: International Conference on Computer Vision, Santiago, Chile, pp. 406–414 (2015)Google Scholar
  10. 10.
    Perazzi, F., Sorkine Hornung, O., Sorkine-Hornung, A.: Efficient salient foreground detection for images and video using fiedler vector. In: Workshop on Intelligent Cinematography and Editing, vol. 34, no. 2, pp. 21–29 (2015)Google Scholar
  11. 11.
    Zhou, B., Hou, X., Zhang, L.: A phase discrepancy analysis of object motion. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 225–238. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19318-7_18 CrossRefGoogle Scholar
  12. 12.
    Jiang, B., Valstar, M.F., Pantic, M.: Action unit detection using sparse appearance descriptors in space-time video volumes. In: IEEE International Conference on Automatic Face & Gesture Recognition and Workshops, USA, pp. 314–321 (2011)Google Scholar
  13. 13.
    Zhen, Q., Huang, D., Wang, Y., Chen, L.: LPQ based static and dynamic modeling of facial expressions in 3D videos. In: Sun, Z., Shan, S., Yang, G., Zhou, J., Wang, Y., Yin, Y. (eds.) CCBR 2013. LNCS, vol. 8232, pp. 122–129. Springer, Cham (2013). doi: 10.1007/978-3-319-02961-0_15 CrossRefGoogle Scholar
  14. 14.
    Muddamsetty, S.M., Sidibe, D., Tremeau, A., Meriaudeau, F.: A performance evaluation of fusion techniques for spatio-temporal saliency detection in dynamic scenes. In: Proceedings of IEEE International Conference on Image Processing, Australia, pp. 1–5 (2013)Google Scholar
  15. 15.
    Liu, F., Gleicher, M.: Automatic image retargeting with fish eye-view warping. In: 18th Annual ACM Symposium on User Interface Software and Technology, USA, pp. 153–162 (2005)Google Scholar
  16. 16.
    Goferman, S., Zelnik-manor, L., Tal, A.: Context-aware saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 1915–1926 (2010)Google Scholar
  17. 17.
    Website for NTT Dataset.
  18. 18.
    Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69905-7_27 CrossRefGoogle Scholar
  19. 19.
    Lin, L., Zhou, W.: LGOH-based discriminant centre-surround saliency detection. Int. J. Adv. Rob. Syst. 10, 1–8 (2013)CrossRefGoogle Scholar
  20. 20.
    Muddamsetty, S.M., Sidibé, D., Trémeau, A., Mériaudeau, F.: Spatio-temporal saliency detection in dynamic scenes using local binary patterns. In: ICPR, Sweden, pp. 2353–2358 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • A. Sasithradevi
    • 1
    Email author
  • S. Mohamed Mansoor Roomi
    • 1
  • I. Sanofer
    • 1
  1. 1.Thiagrajar College of EngineeringMaduraiIndia

Personalised recommendations