Skip to main content

Segmentation of Lumen and External Elastic Laminae in Intravascular Ultrasound Images Using Ultrasonic Backscattering Physics Initialized Multiscale Random Walks

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10481))

Abstract

Coronary artery disease accounts for a large number of deaths across the world and clinicians generally prefer using x-ray computed tomography or magnetic resonance imaging for localizing vascular pathologies. Interventional imaging modalities like intravascular ultrasound (IVUS) are used to adjunct diagnosis of atherosclerotic plaques in vessels, and help assess morphological state of the vessel and plaque, which play a significant role for treatment planning. Since speckle intensity in IVUS images are inherently stochastic in nature and challenge clinicians with accurate visibility of the vessel wall boundaries, it requires automation. In this paper we present a method for segmenting the lumen and external elastic laminae of the artery wall in IVUS images using random walks over a multiscale pyramid of Gaussian decomposed frames. The seeds for the random walker are initialized by supervised learning of ultrasonic backscattering and attenuation statistical mechanics from labelled training samples. We have experimentally evaluated the performance using 77 IVUS images acquired at 40 MHz that are available in the IVUS segmentation challenge dataset (http://www.cvc.uab.es/IVUSchallenge2011/dataset.html.) to obtain a Jaccard score of \(0.89 \pm 0.14\) for lumen and \(0.85 \pm 0.12\) for external elastic laminae segmentation over a 10-fold cross-validation study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.cvc.uab.es/IVUSchallenge2011/dataset.html.

References

  1. Balocco, S., Gatta, C., Ciompi, F., Wahle, A., Radeva, P., Carlier, S., Unal, G., Sanidas, E., Mauri, J., Carillo, X., et al.: Standardized evaluation methodology and reference database for evaluating IVUS image segmentation. Comput. Med. Imaging Graph. 38(2), 70–90 (2014)

    Article  Google Scholar 

  2. Bovenkamp, E.G., Dijkstra, J., Bosch, J.G., Reiber, J.H.: User-agent cooperation in multiagent IVUS image segmentation. IEEE Trans. Med. Imaging 28(1), 94–105 (2009)

    Article  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Cardinal, M.H.R., Meunier, J., Soulez, G., Maurice, R.L., Therasse, É., Cloutier, G.: Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Trans. Med. Imaging 25(5), 590–601 (2006)

    Article  Google Scholar 

  5. Ciompi, F., Pujol, O., Gatta, C., Alberti, M., Balocco, S., Carrillo, X., Mauri-Ferre, J., Radeva, P.: HoliMAb: a holistic approach for media-adventitia border detection in intravascular ultrasound. Med. Image Anal. 16(6), 1085–1100 (2012)

    Article  Google Scholar 

  6. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends®. Comput. Graph. Vis. 7(2–3), 81–227 (2012)

    MATH  Google Scholar 

  7. Downe, R., Wahle, A., Kovarnik, T., Skalicka, H., Lopez, J., Horak, J., Sonka, M.: Segmentation of intravascular ultrasound images using graph search and a novel cost function. In: Proceedings of the Medical Image Computing and Computer Assisted Intervention Workshop, Computer Vision for Intravascular and Intracardiac Imaging, pp. 71–79 (2008)

    Google Scholar 

  8. Gil, D., Hernández, A., Rodriguez, O., Mauri, J., Radeva, P.: Statistical strategy for anisotropic adventitia modelling in IVUS. IEEE Trans. Med. Imaging 25(6), 768–778 (2006)

    Article  Google Scholar 

  9. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  10. Herrington, D.M., Johnson, T., Santago, P., Snyder, W.E.: Semi-automated boundary detection for intravascular ultrasound. In: Proceedings of the Computers in Cardiology Conference, pp. 103–106 (1992)

    Google Scholar 

  11. Karamalis, A., Katouzian, A., Carlier, S., Navab, N.: Confidence estimation in IVUS radio-frequency data with random walks. In: Proceedings of the International Symposium on Biomedical Imaging, pp. 1068–1071 (2012)

    Google Scholar 

  12. Karamalis, A., Wein, W., Klein, T., Navab, N.: Ultrasound confidence maps using random walks. Med. Image Anal. 16(6), 1101–1112 (2012)

    Article  Google Scholar 

  13. Klingensmith, J.D., Shekhar, R., Vince, D.G.: Evaluation of three-dimensional segmentation algorithms for the identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE Trans. Med. Imaging 19(10), 996–1011 (2000)

    Article  Google Scholar 

  14. Mendizabal-Ruiz, E.G., Rivera, M., Kakadiaris, I.A.: Segmentation of the luminal border in intravascular ultrasound b-mode images using a probabilistic approach. Med. Image Anal. 17(6), 649–670 (2013)

    Article  Google Scholar 

  15. Nag, M.K., Mandana, K., Sadhu, A.K., Mitra, P., Chakraborty, C.: Automated in vivo delineation of lumen wall using intravascular ultrasound imaging. In: Proceedings of the International Conference on Engineering in Medicine and Biology Society, pp. 4125–4128 (2016)

    Google Scholar 

  16. Plissiti, M.E., Fotiadis, D.I., Michalis, L.K., Bozios, G.E.: An automated method for lumen and media-adventitia border detection in a sequence of IVUS frames. IEEE Trans. Inf. Tech. Biomed. 8(2), 131–141 (2004)

    Article  Google Scholar 

  17. Roy, A.G., Conjeti, S., Carlier, S.G., Dutta, P.K., Kastrati, A., Laine, A.F., Navab, N., Katouzian, A., Sheet, D.: Lumen segmentation in intravascular optical coherence tomography using backscattering tracked and initialized random walks. IEEE J. Biomed. Health Inf. 20(2), 606–614 (2016)

    Article  Google Scholar 

  18. Sen, P.K., Singer, J.M.: Large Sample Methods in Statistics: An Introduction with Applications, vol. 25. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  19. Shankar, P.M.: A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(3), 727–736 (2000)

    Article  Google Scholar 

  20. Shankar, P.: Estimation of the Nakagami parameter from log-compressed ultrasonic backscattered envelopes (L). J. Acoust. Soc. Am. 114(1), 70–72 (2003)

    Article  Google Scholar 

  21. Sheet, D., Karamalis, A., Eslami, A., Noël, P., Chatterjee, J., Ray, A.K., Laine, A.F., Carlier, S.G., Navab, N., Katouzian, A.: Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound. Med. Image Anal. 18(1), 103–117 (2014)

    Article  Google Scholar 

  22. Sheet, D., Karamalis, A., Kraft, S., Noël, P.B., Vag, T., Sadhu, A., Katouzian, A., Navab, N., Chatterjee, J., Ray, A.K.: Random forest learning of ultrasonic statistical physics and object spaces for lesion detection in 2D sonomammography. In: Proceedings of the SPIE Medical Imaging, p. 867515 (2013)

    Google Scholar 

  23. Shekhar, R., Cothren, R., Vince, D.G., Chandra, S., Thomas, J., Cornhill, J.: Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images. Comput. Med. Imaging Graph. 23(6), 299–309 (1999)

    Article  Google Scholar 

  24. Sonka, M., Zhang, X., Siebes, M., Bissing, M.S., DeJong, S.C., Collins, S.M., McKay, C.R.: Segmentation of intravascular ultrasound images: a knowledge-based approach. IEEE Trans. Med. Imaging 14(4), 719–732 (1995)

    Article  Google Scholar 

  25. Sun, S., Sonka, M., Beichel, R.R.: Graph-based IVUS segmentation with efficient computer-aided refinement. IEEE Trans. Med. Imaging 32(8), 1536–1549 (2013)

    Article  Google Scholar 

  26. Unal, G., Bucher, S., Carlier, S., Slabaugh, G., Fang, T., Tanaka, K.: Shape-driven segmentation of the arterial wall in intravascular ultrasound images. IEEE Trans. Inf. Tech. Biomed. 12(3), 335–347 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debdoot Sheet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

China, D., Mitra, P., Sheet, D. (2017). Segmentation of Lumen and External Elastic Laminae in Intravascular Ultrasound Images Using Ultrasonic Backscattering Physics Initialized Multiscale Random Walks. In: Mukherjee, S., et al. Computer Vision, Graphics, and Image Processing. ICVGIP 2016. Lecture Notes in Computer Science(), vol 10481. Springer, Cham. https://doi.org/10.1007/978-3-319-68124-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68124-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68123-8

  • Online ISBN: 978-3-319-68124-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics