Segmentation of Lumen and External Elastic Laminae in Intravascular Ultrasound Images Using Ultrasonic Backscattering Physics Initialized Multiscale Random Walks

  • Debarghya China
  • Pabitra Mitra
  • Debdoot SheetEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)


Coronary artery disease accounts for a large number of deaths across the world and clinicians generally prefer using x-ray computed tomography or magnetic resonance imaging for localizing vascular pathologies. Interventional imaging modalities like intravascular ultrasound (IVUS) are used to adjunct diagnosis of atherosclerotic plaques in vessels, and help assess morphological state of the vessel and plaque, which play a significant role for treatment planning. Since speckle intensity in IVUS images are inherently stochastic in nature and challenge clinicians with accurate visibility of the vessel wall boundaries, it requires automation. In this paper we present a method for segmenting the lumen and external elastic laminae of the artery wall in IVUS images using random walks over a multiscale pyramid of Gaussian decomposed frames. The seeds for the random walker are initialized by supervised learning of ultrasonic backscattering and attenuation statistical mechanics from labelled training samples. We have experimentally evaluated the performance using 77 IVUS images acquired at 40 MHz that are available in the IVUS segmentation challenge dataset ( to obtain a Jaccard score of \(0.89 \pm 0.14\) for lumen and \(0.85 \pm 0.12\) for external elastic laminae segmentation over a 10-fold cross-validation study.


External elastic laminae segmentation Intravascular ultrasound Lumen segmentation Random forests Random walks Signal confidence 


  1. 1.
    Balocco, S., Gatta, C., Ciompi, F., Wahle, A., Radeva, P., Carlier, S., Unal, G., Sanidas, E., Mauri, J., Carillo, X., et al.: Standardized evaluation methodology and reference database for evaluating IVUS image segmentation. Comput. Med. Imaging Graph. 38(2), 70–90 (2014)CrossRefGoogle Scholar
  2. 2.
    Bovenkamp, E.G., Dijkstra, J., Bosch, J.G., Reiber, J.H.: User-agent cooperation in multiagent IVUS image segmentation. IEEE Trans. Med. Imaging 28(1), 94–105 (2009)CrossRefGoogle Scholar
  3. 3.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cardinal, M.H.R., Meunier, J., Soulez, G., Maurice, R.L., Therasse, É., Cloutier, G.: Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Trans. Med. Imaging 25(5), 590–601 (2006)CrossRefGoogle Scholar
  5. 5.
    Ciompi, F., Pujol, O., Gatta, C., Alberti, M., Balocco, S., Carrillo, X., Mauri-Ferre, J., Radeva, P.: HoliMAb: a holistic approach for media-adventitia border detection in intravascular ultrasound. Med. Image Anal. 16(6), 1085–1100 (2012)CrossRefGoogle Scholar
  6. 6.
    Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: a unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found. Trends®. Comput. Graph. Vis. 7(2–3), 81–227 (2012)zbMATHGoogle Scholar
  7. 7.
    Downe, R., Wahle, A., Kovarnik, T., Skalicka, H., Lopez, J., Horak, J., Sonka, M.: Segmentation of intravascular ultrasound images using graph search and a novel cost function. In: Proceedings of the Medical Image Computing and Computer Assisted Intervention Workshop, Computer Vision for Intravascular and Intracardiac Imaging, pp. 71–79 (2008)Google Scholar
  8. 8.
    Gil, D., Hernández, A., Rodriguez, O., Mauri, J., Radeva, P.: Statistical strategy for anisotropic adventitia modelling in IVUS. IEEE Trans. Med. Imaging 25(6), 768–778 (2006)CrossRefGoogle Scholar
  9. 9.
    Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  10. 10.
    Herrington, D.M., Johnson, T., Santago, P., Snyder, W.E.: Semi-automated boundary detection for intravascular ultrasound. In: Proceedings of the Computers in Cardiology Conference, pp. 103–106 (1992)Google Scholar
  11. 11.
    Karamalis, A., Katouzian, A., Carlier, S., Navab, N.: Confidence estimation in IVUS radio-frequency data with random walks. In: Proceedings of the International Symposium on Biomedical Imaging, pp. 1068–1071 (2012)Google Scholar
  12. 12.
    Karamalis, A., Wein, W., Klein, T., Navab, N.: Ultrasound confidence maps using random walks. Med. Image Anal. 16(6), 1101–1112 (2012)CrossRefGoogle Scholar
  13. 13.
    Klingensmith, J.D., Shekhar, R., Vince, D.G.: Evaluation of three-dimensional segmentation algorithms for the identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE Trans. Med. Imaging 19(10), 996–1011 (2000)CrossRefGoogle Scholar
  14. 14.
    Mendizabal-Ruiz, E.G., Rivera, M., Kakadiaris, I.A.: Segmentation of the luminal border in intravascular ultrasound b-mode images using a probabilistic approach. Med. Image Anal. 17(6), 649–670 (2013)CrossRefGoogle Scholar
  15. 15.
    Nag, M.K., Mandana, K., Sadhu, A.K., Mitra, P., Chakraborty, C.: Automated in vivo delineation of lumen wall using intravascular ultrasound imaging. In: Proceedings of the International Conference on Engineering in Medicine and Biology Society, pp. 4125–4128 (2016)Google Scholar
  16. 16.
    Plissiti, M.E., Fotiadis, D.I., Michalis, L.K., Bozios, G.E.: An automated method for lumen and media-adventitia border detection in a sequence of IVUS frames. IEEE Trans. Inf. Tech. Biomed. 8(2), 131–141 (2004)CrossRefGoogle Scholar
  17. 17.
    Roy, A.G., Conjeti, S., Carlier, S.G., Dutta, P.K., Kastrati, A., Laine, A.F., Navab, N., Katouzian, A., Sheet, D.: Lumen segmentation in intravascular optical coherence tomography using backscattering tracked and initialized random walks. IEEE J. Biomed. Health Inf. 20(2), 606–614 (2016)CrossRefGoogle Scholar
  18. 18.
    Sen, P.K., Singer, J.M.: Large Sample Methods in Statistics: An Introduction with Applications, vol. 25. CRC Press, Boca Raton (1994)zbMATHGoogle Scholar
  19. 19.
    Shankar, P.M.: A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(3), 727–736 (2000)CrossRefGoogle Scholar
  20. 20.
    Shankar, P.: Estimation of the Nakagami parameter from log-compressed ultrasonic backscattered envelopes (L). J. Acoust. Soc. Am. 114(1), 70–72 (2003)CrossRefGoogle Scholar
  21. 21.
    Sheet, D., Karamalis, A., Eslami, A., Noël, P., Chatterjee, J., Ray, A.K., Laine, A.F., Carlier, S.G., Navab, N., Katouzian, A.: Joint learning of ultrasonic backscattering statistical physics and signal confidence primal for characterizing atherosclerotic plaques using intravascular ultrasound. Med. Image Anal. 18(1), 103–117 (2014)CrossRefGoogle Scholar
  22. 22.
    Sheet, D., Karamalis, A., Kraft, S., Noël, P.B., Vag, T., Sadhu, A., Katouzian, A., Navab, N., Chatterjee, J., Ray, A.K.: Random forest learning of ultrasonic statistical physics and object spaces for lesion detection in 2D sonomammography. In: Proceedings of the SPIE Medical Imaging, p. 867515 (2013)Google Scholar
  23. 23.
    Shekhar, R., Cothren, R., Vince, D.G., Chandra, S., Thomas, J., Cornhill, J.: Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images. Comput. Med. Imaging Graph. 23(6), 299–309 (1999)CrossRefGoogle Scholar
  24. 24.
    Sonka, M., Zhang, X., Siebes, M., Bissing, M.S., DeJong, S.C., Collins, S.M., McKay, C.R.: Segmentation of intravascular ultrasound images: a knowledge-based approach. IEEE Trans. Med. Imaging 14(4), 719–732 (1995)CrossRefGoogle Scholar
  25. 25.
    Sun, S., Sonka, M., Beichel, R.R.: Graph-based IVUS segmentation with efficient computer-aided refinement. IEEE Trans. Med. Imaging 32(8), 1536–1549 (2013)CrossRefGoogle Scholar
  26. 26.
    Unal, G., Bucher, S., Carlier, S., Slabaugh, G., Fang, T., Tanaka, K.: Shape-driven segmentation of the arterial wall in intravascular ultrasound images. IEEE Trans. Inf. Tech. Biomed. 12(3), 335–347 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Advanced Technology Development CentreIndian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of Technology KharagpurKharagpurIndia
  3. 3.Department of Electrical EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations