Advertisement

Methods and System for Segmentation of Isolated Nuclei in Microscopic Breast Fine Needle Aspiration Cytology Images

  • Hrushikesh GarudEmail author
  • Sri Phani Krishna Karri
  • Debdoot Sheet
  • Ashok Kumar Maity
  • Jyotirmoy Chatterjee
  • Manjunatha Mahadevappa
  • Ajoy Kumar Ray
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)

Abstract

Computer vision systems for automated breast cancer diagnosis using Fine Needle Aspiration Cytology (FNAC) images are under development for a while now. Accurate segmentation of the nuclei in microscopic images is crucial for functioning of these systems, as most quantify and analyze nuclear features for diagnosis. This paper presents a nucleus segmentation system (NSS) involving pre-processing, pre-segmentation and refined segmentation stages. The NSS includes a novel pixel transformation step to create a high contrast grayscale representation of the input color image. The grayscale image gives NSS the capability- to disregard elements that mimic nuclear morphological and luminescence characteristics, and to minimize effects of non-specific staining of cytoplasm by Hematoxylin. Experimental results illustrate generalizability of the NSS to use multiple refined segmentation techniques and particularly achieve accurate nucleus segmentation using active contours without edges(F-score > 0.92). The paper also presents the results of experiments conducted to study the impact of image pre-processing steps on the NSS performance. The pre-processing steps are observed to improve accuracy and consistency across tested refined segmentation techniques.

Keywords

Breast FNAC Nucleus segmentation Active contour models 

References

  1. 1.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  2. 2.
    Garud, H., Pudipeddi, U.K., Desappan, K., Nagori, S.: A fast color constancy scheme for automobile video cameras. In: 2014 International Conference on Signal Processing and Communications (SPCOM), pp. 1–6, July 2014Google Scholar
  3. 3.
    Garud, H., Ray, A.K., Manjunatha, M., Chatterjee, J., Mandal, S.: A fast auto white balance scheme for digital pathology. In: 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 153–156, June 2014Google Scholar
  4. 4.
    Garud, H.T., Sheet, D., Mahadevappa, M., Chatterjee, J., Ray, A.K., Ghosh, A.: Breast fine needle aspiration cytology practices and commonly perceived diagnostic significance of cytological features: a pan-India survey. J. Cytol. 29(3), 183 (2012)CrossRefGoogle Scholar
  5. 5.
    Garud, H., Sheet, D., Ray, A., Mahadevappa, M., Chatterjee, J.: Adaptive weighted-local-difference order statistics filters, US Patent 9,208,545 (2015)Google Scholar
  6. 6.
    Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)CrossRefGoogle Scholar
  7. 7.
    Grady, L., Schwartz, E.: The graph analysis toolbox: image processing on arbitrary graphs. CAS/CNS Technical Report Series (021) (2010)Google Scholar
  8. 8.
    Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review- current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2014)CrossRefGoogle Scholar
  9. 9.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  10. 10.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefzbMATHGoogle Scholar
  11. 11.
    Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5323), 34–35 (1971)CrossRefGoogle Scholar
  12. 12.
    Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423, July 2001Google Scholar
  13. 13.
    Obuchowicz, A., Hrebień, M., Nieczkowski, T., Marciniak, A.: Computational intelligence techniques in image segmentation for cytopathology. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.) Computational Intelligence in Biomedicine and Bioinformatics. SCI, pp. 169–199. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-70778-3_7 CrossRefGoogle Scholar
  14. 14.
    Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Perry, J.W., Kent, A., Berry, M.M.: Machine literature searching X. Machine language; factors underlying its design and development. Am. Doc. 6(4), 242–254 (1955). doi: 10.1002/asi.5090060411 CrossRefGoogle Scholar
  16. 16.
    Pietka, D., Dulewicz, A., Jaszczak, P.: Removing artefacts from microscopic images of cytological smears. A shape-based approach. In: Kurzyński, M., Puchała, E., Woźniak, M., żołnierek, A. (eds.) Computer Recognition Systems. Advances in Soft Computing, vol. 30, pp. 661–669. Springer, Heidelberg (2005). doi: 10.1007/3-540-32390-2_78 CrossRefGoogle Scholar
  17. 17.
    Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23, 291–299 (2001)Google Scholar
  18. 18.
    Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  19. 19.
    Xing, F., Yang, L.: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev. Biomed. Eng. 9, 234–263 (2016)CrossRefGoogle Scholar
  20. 20.
    Young, I.T.: Shading correction: compensation for illumination and sensor inhomogeneities. In: Current Protocols in Cytometry. John Wiley & Sons, Inc. (2001). ISBN 9780471142959. doi: 10.1002/0471142956.cy0211s14

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Hrushikesh Garud
    • 1
    Email author
  • Sri Phani Krishna Karri
    • 1
  • Debdoot Sheet
    • 1
  • Ashok Kumar Maity
    • 2
  • Jyotirmoy Chatterjee
    • 1
  • Manjunatha Mahadevappa
    • 1
  • Ajoy Kumar Ray
    • 1
  1. 1.Indian Institute of Technology KharagpurKharagpurIndia
  2. 2.Midnapur Medical College and HospitalMidnapurIndia

Personalised recommendations