Skip to main content

Methods and System for Segmentation of Isolated Nuclei in Microscopic Breast Fine Needle Aspiration Cytology Images

  • Conference paper
  • First Online:
Computer Vision, Graphics, and Image Processing (ICVGIP 2016)

Abstract

Computer vision systems for automated breast cancer diagnosis using Fine Needle Aspiration Cytology (FNAC) images are under development for a while now. Accurate segmentation of the nuclei in microscopic images is crucial for functioning of these systems, as most quantify and analyze nuclear features for diagnosis. This paper presents a nucleus segmentation system (NSS) involving pre-processing, pre-segmentation and refined segmentation stages. The NSS includes a novel pixel transformation step to create a high contrast grayscale representation of the input color image. The grayscale image gives NSS the capability- to disregard elements that mimic nuclear morphological and luminescence characteristics, and to minimize effects of non-specific staining of cytoplasm by Hematoxylin. Experimental results illustrate generalizability of the NSS to use multiple refined segmentation techniques and particularly achieve accurate nucleus segmentation using active contours without edges(F-score > 0.92). The paper also presents the results of experiments conducted to study the impact of image pre-processing steps on the NSS performance. The pre-processing steps are observed to improve accuracy and consistency across tested refined segmentation techniques.

H. Garud—Special Thanks: Texas Instruments Inc. and Dr. Arindam Ghosh for their continued support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this paper symbols \(\text {f}\) and \(\mathbf f \) are used to represent single channel and multi-channel images.

References

  1. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  2. Garud, H., Pudipeddi, U.K., Desappan, K., Nagori, S.: A fast color constancy scheme for automobile video cameras. In: 2014 International Conference on Signal Processing and Communications (SPCOM), pp. 1–6, July 2014

    Google Scholar 

  3. Garud, H., Ray, A.K., Manjunatha, M., Chatterjee, J., Mandal, S.: A fast auto white balance scheme for digital pathology. In: 2014 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 153–156, June 2014

    Google Scholar 

  4. Garud, H.T., Sheet, D., Mahadevappa, M., Chatterjee, J., Ray, A.K., Ghosh, A.: Breast fine needle aspiration cytology practices and commonly perceived diagnostic significance of cytological features: a pan-India survey. J. Cytol. 29(3), 183 (2012)

    Article  Google Scholar 

  5. Garud, H., Sheet, D., Ray, A., Mahadevappa, M., Chatterjee, J.: Adaptive weighted-local-difference order statistics filters, US Patent 9,208,545 (2015)

    Google Scholar 

  6. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  7. Grady, L., Schwartz, E.: The graph analysis toolbox: image processing on arbitrary graphs. CAS/CNS Technical Report Series (021) (2010)

    Google Scholar 

  8. Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review- current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2014)

    Article  Google Scholar 

  9. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  10. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  MATH  Google Scholar 

  11. Levandowsky, M., Winter, D.: Distance between sets. Nature 234(5323), 34–35 (1971)

    Article  Google Scholar 

  12. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision, vol. 2, pp. 416–423, July 2001

    Google Scholar 

  13. Obuchowicz, A., Hrebień, M., Nieczkowski, T., Marciniak, A.: Computational intelligence techniques in image segmentation for cytopathology. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.E. (eds.) Computational Intelligence in Biomedicine and Bioinformatics. SCI, pp. 169–199. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70778-3_7

    Chapter  Google Scholar 

  14. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  MathSciNet  Google Scholar 

  15. Perry, J.W., Kent, A., Berry, M.M.: Machine literature searching X. Machine language; factors underlying its design and development. Am. Doc. 6(4), 242–254 (1955). doi:10.1002/asi.5090060411

    Article  Google Scholar 

  16. Pietka, D., Dulewicz, A., Jaszczak, P.: Removing artefacts from microscopic images of cytological smears. A shape-based approach. In: Kurzyński, M., Puchała, E., Woźniak, M., żołnierek, A. (eds.) Computer Recognition Systems. Advances in Soft Computing, vol. 30, pp. 661–669. Springer, Heidelberg (2005). doi:10.1007/3-540-32390-2_78

    Chapter  Google Scholar 

  17. Ruifrok, A.C., Johnston, D.A.: Quantification of histochemical staining by color deconvolution. Anal. Quant. Cytol. Histol. 23, 291–299 (2001)

    Google Scholar 

  18. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  19. Xing, F., Yang, L.: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev. Biomed. Eng. 9, 234–263 (2016)

    Article  Google Scholar 

  20. Young, I.T.: Shading correction: compensation for illumination and sensor inhomogeneities. In: Current Protocols in Cytometry. John Wiley & Sons, Inc. (2001). ISBN 9780471142959. doi:10.1002/0471142956.cy0211s14

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrushikesh Garud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Garud, H. et al. (2017). Methods and System for Segmentation of Isolated Nuclei in Microscopic Breast Fine Needle Aspiration Cytology Images. In: Mukherjee, S., et al. Computer Vision, Graphics, and Image Processing. ICVGIP 2016. Lecture Notes in Computer Science(), vol 10481. Springer, Cham. https://doi.org/10.1007/978-3-319-68124-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68124-5_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68123-8

  • Online ISBN: 978-3-319-68124-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics