Cardiac Ultrasound Image Enhancement Using Tissue Selective Total Variation Regularization

  • Deepak MishraEmail author
  • Santanu Chaudhury
  • Mukul Sarkar
  • Arvinder Singh Soin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)


Speckle reduction is desired to improve the quality of ultrasound images. However, a uniform speckle reduction from the entire image results in loss of important information, especially in cardiac ultrasound images. In this paper, a tissue selective total variation regularization approach is proposed for the enhancement of cardiac ultrasound images. It measures the pixel probability of belonging to blood regions and uses it in the total variation framework. As a result, the unwanted speckle from the blood chamber regions is removed and the useful speckle in the tissue regions is preserved. This helps to improve the visible contrast of the images and enhances the structural details. The proposed approach is evaluated using synthetic as well as real images. A better performance is observed as compared to the state-of-the-art filters in terms of speckle region’s signal to noise ratio, structural similarity measure index, figure of merit, and mean square error.


Ultrasound image Total variation Speckle Blood region 


  1. 1.
    Aja-Fernández, S., Alberola-López, C.: On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. IEEE Trans. Image Process. 15(9), 2694–2701 (2006)CrossRefGoogle Scholar
  2. 2.
    Aubert, G., Aujol, J.F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Balocco, S., Gatta, C., Pujol, O., Mauri, J., Radeva, P.: SRBF: speckle reducing bilateral filtering. Ultrasound Med. Biol. 36(8), 1353–1363 (2010)CrossRefGoogle Scholar
  4. 4.
    Bioucas-Dias, J.M., Figueiredo, M.A.: Multiplicative noise removal using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(7), 1720–1730 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Coupé, P., Hellier, P., Kervrann, C., Barillot, C.: Nonlocal means-based speckle filtering for ultrasound images. IEEE Trans. Image Process. 18(10), 2221–2229 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Finn, S., Glavin, M., Jones, E.: Echocardiographic speckle reduction comparison. IEEE Trans. Ultrason. Ferroelect. Freq. Control 58(1), 82–101 (2011)CrossRefGoogle Scholar
  7. 7.
    Grasmair, M.: Locally adaptive total variation regularization. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 331–342. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02256-2_28 CrossRefGoogle Scholar
  8. 8.
    Gupta, N., Swamy, M.N., Plotkin, E.: Despeckling of medical ultrasound images using data and rate adaptive lossy compression. IEEE Trans. Med. Imaging 24(6), 743–754 (2005)CrossRefGoogle Scholar
  9. 9.
    Huang, Y.M., Ng, M.K., Wen, Y.W.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2(1), 20–40 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Jensen, J.A., Svendsen, N.B.: Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans. Ultrason. Ferroelect. Freq. Control. 39(2), 262–267 (1992)CrossRefGoogle Scholar
  11. 11.
    Kuan, D.A., Sawchuk, A.L., Strand, T.I., Chavel, P.: Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech Sig. Process. 35(3), 373–383 (1987)CrossRefGoogle Scholar
  12. 12.
    Lee, J.S.: Speckle analysis and smoothing of synthetic aperture radar images. Comput. Graph. Image Process. 17(1), 24–32 (1981)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Loizou, C.P., Pattichis, C.S., Christodoulou, C.I., Istepanian, R.S., Pantziaris, M., Nicolaides, A.: Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery. IEEE Trans. Ultrason. Ferroelect. Freq. Control 52(10), 1653–1669 (2005)CrossRefGoogle Scholar
  14. 14.
    Perreault, C., Auclair-Fortier, M.F.: Speckle simulation based on B-mode echographic image acquisition model. In: Fourth Canadian Conference on Computer and Robot Vision, pp. 379–386. IEEE (2007)Google Scholar
  15. 15.
    Ramos-Llordén, G., Vegas-Sánchez-Ferrero, G., Martin-Fernandez, M., Alberola-López, C., Aja-Fernández, S.: Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images. IEEE Trans. Image Process. 24(1), 345–358 (2015)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60(1), 259–268 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Shi, J., Osher, S.: A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J. Imaging Sci. 1(3), 294–321 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Vegas-Sanchez-Ferrero, G., Aja-Fernandez, S., Martín-Fernández, M., Frangi, A.F., Palencia, C.: Probabilistic-driven oriented speckle reducing anisotropic diffusion with application to cardiac ultrasonic images. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6361, pp. 518–525. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15705-9_63 CrossRefGoogle Scholar
  19. 19.
    Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Yue, Y., Croitoru, M.M., Bidani, A., Zwischenberger, J.B., Clark, J.W.: Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images. IEEE Trans. Med. Imaging 25(3), 297–311 (2006)CrossRefGoogle Scholar
  21. 21.
    Zhang, F., Yoo, Y.M., Koh, L.M., Kim, Y.: Nonlinear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction. IEEE Trans. Med. Imaging 26(2), 200–211 (2007)CrossRefGoogle Scholar
  22. 22.
    Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1–2), 89–97 (2004)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Deepak Mishra
    • 1
    Email author
  • Santanu Chaudhury
    • 1
  • Mukul Sarkar
    • 1
  • Arvinder Singh Soin
    • 2
  1. 1.Indian Institute of Technology DelhiNew DelhiIndia
  2. 2.Medanta HospitalGurgaonIndia

Personalised recommendations