MR Imaging via Reduced Generalized Autocalibrating Partially Parallel Acquisition Compressed Sensing

  • Sheikh Rafiul IslamEmail author
  • Seba Maity
  • Santi P. Maity
  • Ajoy Kumar Ray
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)


Magnetic Resonance Imaging (MRI) system in recent times demands a high rate of acceleration in data acquisition to reduce the scanning time. The data acquisition rate can be accelerated to a significant order through Parallel MRI (pMRI) approach. An additional improvement in low sensing time for data acquisition can be achieved using Compressed Sensing (CS) or Compressive Sampling that enables reconstruction of a sparse signal from sub-sample (incomplete) measurements. This paper proposes an efficient pMRI scheme by combining CS with Generalized Auto-calibrating Partially Parallel Acquisitions (GRAPPA) to produce an MR image at high data acquisition rate. A kernel of reduced size is used within GRAPPA for estimating the unobserved encoded samples. Instead of all the unobserved samples, a certain number of the same are estimated randomly. Now, an \(l_{1}\)-minimization based CS reconstruction technique is used in which the observed and the estimated unobserved samples are taken as measurements to reconstruct the final MR images. Extensive simulation results show that a significant reduction in artifacts and thereby consequent visual improvement in the reconstructed MRIs are achieved even when a high rate of acceleration factor is used. Simulation results also demonstrate that the proposed method outperforms some state-of-art pMRI methods, both in terms of subjective and objective quality assessment for the reconstructed images.


Compressed sensing GRAPPA Parallel imaging pMRI Image reconstruction 


  1. 1.
    Semelka, R.C., Armao, D.M., Elias, J., Huda, W.: Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI. J. Magn. Reson. Imaging 25(5), 900–909 (2007)CrossRefGoogle Scholar
  2. 2.
    Wright, G.: Magnetic resonance imaging. IEEE Sig. Process. Mag. 14(1), 56–66 (1997)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Jolesz, F.A.: Future perspectives for intraoperative MRI. Neurosurg. Clin. N. Am. 16(1), 201–213 (2005)CrossRefGoogle Scholar
  4. 4.
    Sasaki, M., Ehara, S., Nakasato, T., Tamakawa, Y., Kuboya, Y., Sugisawa, M., Sato, T.: MR of the shoulder with a 0.2-t permanent-magnet unit. Am. J. Roentgenol. 154(4), 777–778 (1990)CrossRefGoogle Scholar
  5. 5.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Candes, E.J., Romberg, J.K., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. J. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Baraniuk, R.G.: Compressive sensing. IEEE Sig. Process. Mag. 24(4), 118–120 (2007)CrossRefGoogle Scholar
  8. 8.
    Edelman, R.R., Warach, S.: Magnetic resonance imaging. N. Engl. J. Med. 328(10), 708–716 (1993)CrossRefGoogle Scholar
  9. 9.
    Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Sig. Process. Mag. 25(2), 72–82 (2008)CrossRefGoogle Scholar
  10. 10.
    Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P., et al.: Sense: sensitivity encoding for fast MRI. Magn. Reson. Med. 42(5), 952–962 (1999)CrossRefGoogle Scholar
  11. 11.
    Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)CrossRefGoogle Scholar
  12. 12.
    Weller, D., Polimeni, J., Grady, L., Wald, L., Adalsteinsson, E., Goyal, V.: Combining nonconvex compressed sensing and GRAPPA using the nullspace method. In: 18th Annual Meeting of ISMRM, p. 4880 (2010)Google Scholar
  13. 13.
    Weller, D.S., Polimeni, J.R., Grady, L., Wald, L.L., Adalsteinsson, E., Goyal, V.K.: Sparsity-promoting calibration for GRAPPA accelerated parallel MRI reconstruction. IEEE Trans. Med. Imaging 32(7), 1325–1335 (2013)CrossRefGoogle Scholar
  14. 14.
    Xie, G., Song, Y., Shi, C., Feng, X., Zheng, H., Weng, D., Qiu, B., Liu, X.: Accelerated magnetic resonance imaging using the sparsity of multi-channel coil images. Magn. Reson. Imaging 32(2), 175–183 (2014)CrossRefGoogle Scholar
  15. 15.
    Schmidt, R., Baishya, B., Ben-Eliezer, N., Seginer, A., Frydman, L.: Super-resolved parallel MRI by spatiotemporal encoding. Magn. Reson. Imaging 32(1), 60–70 (2014)CrossRefGoogle Scholar
  16. 16.
    Zhou, J., Li, J., Gombaniro, J.C.: Combining sense and compressed sensing MRI with a fast iterative contourlet thresholding algorithm. In: 12th IEEE International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1123–1127 (2015)Google Scholar
  17. 17.
    Chun, I.Y., Adcock, B., Talavage, T.M.: Efficient compressed sensing sense pMRI reconstruction with joint sparsity promotion. IEEE Trans. Med. Imaging 35(1), 354–368 (2016)CrossRefGoogle Scholar
  18. 18.
    Fischer, A., Seiberlich, N., Blaimer, M., Jakob, P., Breuer, F., Griswold, M.: A combination of nonconvex compressed sensing and GRAPPA (CS-GRAPPA). In: Proceedings of the International Society for Magnetic Resonance in Medicine, vol. 17, p. 2813 (2009)Google Scholar
  19. 19.
    Miao, J., Guo, W., Narayan, S., Wilson, D.L.: A simple application of compressed sensing to further accelerate partially parallel imaging. Magn. Reson. Imaging 31(1), 75–85 (2013)CrossRefGoogle Scholar
  20. 20.
    Chang, Y., King, K.F., Liang, D., Ying, L.: Combining compressed sensing and nonlinear GRAPPA for highly accelerated parallel MRI. In: Proceedings of the International Society for Magnetic Resonance in Medicine, p. 2219 (2012)Google Scholar
  21. 21.
    Yang, Z., Zhang, C., Deng, J., Lu, W.: Orthonormal expansion l1-minimization algorithms for compressed sensing. IEEE Trans. Sig. Process. 59(12), 6285–6290 (2011)CrossRefGoogle Scholar
  22. 22.
    Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Bredies, K., Lorenz, D.A.: Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14(5–6), 813–837 (2008)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sheikh Rafiul Islam
    • 1
    Email author
  • Seba Maity
    • 2
  • Santi P. Maity
    • 3
  • Ajoy Kumar Ray
    • 3
  1. 1.Neotia Institute of Technology Management and ScienceKolkataIndia
  2. 2.College of Engineering and ManagementKolaghatIndia
  3. 3.Indian Institute of Engineering Science and Technology, ShibpurHowrahIndia

Personalised recommendations