Advertisement

Photometric Normalization Techniques for Extended Multi-spectral Face Recognition: A Comparative Analysis

  • N. T. VetrekarEmail author
  • R. Raghavendra
  • R. S. Gad
  • G. M. Naik
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)

Abstract

Biometric authentication based on face recognition acquired enormous attention due to its non-intrusive nature of image capture. Recently, with the advancement in sensor technology, face recognition based on Multi-spectral imaging has gained lot of popularity due to its potential of capturing discrete spatio-spectral images across the electromagnetic spectrum. Our contribution here is to study empirically, the extensive comparative performance analysis of 22 photometric illumination normalization techniques for robust Multi-spectral face recognition. To evaluate this study, we developed a Multi-spectral imaging sensor that can capture Multi-spectral facial images across nine different spectral band in the wavelength range from 530 nm to 1000 nm. With the developed sensor we captured Multi-spectral facial database for 231 individuals, which will be made available in the public domain for the researcher community. Further, quantitative experimental performance analysis in the form of identification rate at rank 1, was conducted on 22 photometric normalization techniques using four state-of-the-art face recognition algorithms. The performance analysis indicates outstanding results with utmost all of the photometric normalization techniques for six spectral bands such as 650 nm, 710 nm, 770 nm, 830 nm, 890 nm, 950 nm.

Keywords

Face recognition Multi-spectral face imaging Photometric normalization Feature extraction Feature classifier 

References

  1. 1.
    Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)CrossRefGoogle Scholar
  2. 2.
    Han, H., Shan, S., Chen, X., Gao, W.: A comparative study on illumination preprocessing in face recognition. Pattern Recogn. 46(6), 1691–1699 (2013)CrossRefGoogle Scholar
  3. 3.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 886–893. IEEE Computer Society, Washington, D.C. (2005)Google Scholar
  4. 4.
    Ahonen, T., Rahtu, E., Ojansivu, V., Heikkila, J.: Recognition of blurred faces using local phase quantization. In: 19th International Conference on Pattern Recognition, pp. 1–4. IEEE, Tampa (2008)Google Scholar
  5. 5.
    Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Xiao, Z., Guo, C., Ming, Y., Qiang, L.: Research on log Gabor wavelet and its application in image edge detection. In: 6th International Conference on Signal Processing, vol. 1, pp. 592–595 (2002)Google Scholar
  7. 7.
    Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE International Conference on Computer Vision (ICCV), pp. 471–478 (2011)Google Scholar
  8. 8.
    Ojansivu, V., Heikkilä, J.: Blur insensitive texture classification using local phase quantization. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds.) ICISP 2008. LNCS, vol. 5099, pp. 236–243. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69905-7_27 CrossRefGoogle Scholar
  9. 9.
    Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)CrossRefGoogle Scholar
  10. 10.
    Schroff, F., Treibitz, T., Kriegman, D., Belongie, S.: Pose, illumination and expression invariant pairwise face-similarity measure via Doppelganger list comparison. In: International Conference on Computer Vision (ICCV 2011), pp. 2494–2501 (2011)Google Scholar
  11. 11.
    Zhang, Z., Wang, Y., Zhang, Z.: Face synthesis from near-infrared to visual light via sparse representation. In: International Joint Conference on Biometrics (IJCB), pp. 1–6 (2011)Google Scholar
  12. 12.
    Bourlai, T., Kalka, N., Ross, A., Cukic, B., Hornak, L.: Cross-spectral face verification in the short wave infrared (SWIR) band. In: 20th International Conference on Pattern Recognition (ICPR 2010), pp. 1343–1347. IEEE Computer Society, Washington, D.C. (2010)Google Scholar
  13. 13.
    Bourlai, T., Cukic, B.: Multi-spectral face recognition: identification of people in difficult environments. In: IEEE International Conference on Intelligence and Security Informatics (ISI), pp. 196–201 (2012)Google Scholar
  14. 14.
    Hu, S., Choi, J., Chan, A.L., Schwartz, W.R.: Thermal-to-visible face recognition using partial least squares. J. Opt. Soc. Am. A 32(3), 431–442 (2015)CrossRefGoogle Scholar
  15. 15.
    Liao, S., Yi, D., Lei, Z., Qin, R., Li, S.Z.: Heterogeneous face recognition from local structures of normalized appearance. In: Tistarelli, M., Nixon, M.S. (eds.) ICB 2009. LNCS, vol. 5558, pp. 209–218. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01793-3_22 CrossRefGoogle Scholar
  16. 16.
    Kalka, N.D., Bourlai, T., Cukic, B., Hornak, L.: Cross-spectral face recognition in heterogeneous environments: a case study on matching visible to short-wave infrared imagery. In: International Joint Conference on Biometrics (IJCB), pp. 1–8 (2011)Google Scholar
  17. 17.
    Kang, D., Han, H., Jain, A.K., Lee, S.: Nighttime face recognition at large standoff: cross-distance and cross-spectral matching. Pattern Recogn. 47(12), 3750–3766 (2014)CrossRefGoogle Scholar
  18. 18.
    Short, J., Kittler, J., Messer, K.: A comparison of photometric normalisation algorithms for face verification. In: Sixth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 254–259 (2004)Google Scholar
  19. 19.
    Du, B., Shan, S., Qing, L., Gao, W.: Empirical comparisons of several preprocessing methods for illumination insensitive face recognition. In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005), vol. 2, pp. ii/981–ii/984 (2005)Google Scholar
  20. 20.
    Uzair, M., Mahmood, A., Mian, A.: Hyperspectral face recognition with spatiospectral information fusion and PLS regression. IEEE Trans. Image Process. 24(3), 1127–1137 (2015)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Štruc, V., Vitomir, Š., Nikola, P., Nikola, P.: Photometric normalization techniques for illumination invariance. In: Advances in Face Image Analysis: Techniques and Technologies, pp. 279–300. IGI Global (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • N. T. Vetrekar
    • 1
    Email author
  • R. Raghavendra
    • 2
  • R. S. Gad
    • 1
  • G. M. Naik
    • 1
  1. 1.Department of ElectronicsGoa UniversityGoaIndia
  2. 2.Norwegian Biometrics LaboratoryNTNUGjøvikNorway

Personalised recommendations