Neovascularization Detection on Retinal Images

  • Sudeshna Sil Kar
  • Santi P. MaityEmail author
  • Seba Maity
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)


Proliferative Diabetic Retinopathy (PDR) is characterized by the growth of new abnormal, thin blood vessels called neovascularzation that spread along the retinal surface. An automated computer aided diagnosis system needs to identify neovasculars for PDR screening. Retinal images are often noisy and poorly illuminated. The thin vessels mostly appear to be disconnected and are inseparable from the background. This paper proposes a new method for neovascularization detection on retinal images. Blood vessels are extracted as thick, medium and thin types using multilevel thresholding on matched filter response. The total mutual information between the vessel density and the tortuosity of the thin vessel class is maximized to obtain the optimal thresholds to classify the normal and the abnormal vessels. Simulation results demonstrate that the proposed method outperforms the existing ones for neovascularization detection with an average accuracy of \(97.54\%\).


Neovascularization Proliferative diabetic retinopathy Mutual information Compactness Tortuosity 


  1. 1.
  2. 2.
    Agurto, C., Yu, H., Murray, V., Pattichis, M.S., Barriga, S., Bauman, W., Soliz, P.: Detection of neovascularization in the optic disc using an AM-FM representation, granulometry, and vessel segmentation. In: 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4946–4949, August 2012Google Scholar
  3. 3.
    Akram, M.U., Khalid, S., Tariq, A., Javed, M.Y.: Detection of neovascularization in retinal images using multivariate m-mediods based classifier. Comput. Med. Imaging Graph. 37, 346–357 (2013)CrossRefGoogle Scholar
  4. 4.
    Ding, S., Shi, Z., Jin, F.: Studies on fuzzy information measures. In: 5th IEEE International Conference on Cognitive Informatics, vol. 1, pp. 292–296, July 2006Google Scholar
  5. 5.
    Goatman, K.A., Fleming, A.D., Philip, S., Williams, G.J., Olson, J.A., Sharp, P.F.: Detection of new vessels on the optic disc using retinal photographs. IEEE Trans. Med. Imaging 30(4), 972–979 (2011)CrossRefGoogle Scholar
  6. 6.
    Hassan, S.S.A., Bong, D.B.L., Premsenthil, M.: Detection of neovascularization in diabetic retinopathy. J. Digit. Imaging 25(3), 437–444 (2012)CrossRefGoogle Scholar
  7. 7.
    Hoover, A., Kouznetsova, V., Goldbaum, M.H.: Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)CrossRefGoogle Scholar
  8. 8.
    Kalesnykiene, V., Kamarainen, J.K., Voutilainen, R., Pietilä, J., Kälviäinen, H., Uusitalo, H.: DiaRetDB1 diabetic retinopathy database and evaluation protocol.
  9. 9.
    Kar, S.S., Maity, S.P.: Retinal blood vessel extraction using tunable bandpass filter and fuzzy conditional entropy. Comput. Methods Programs Biomed. 133, 111–132 (2016)CrossRefGoogle Scholar
  10. 10.
    Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)CrossRefGoogle Scholar
  11. 11.
    Mookiah, M.R.K., Acharya, U.R., Chua, C.K., Lim, C.M., Ng, E., Laude, A.: Computer-aided diagnosis of diabetic retinopathy: a review. Comput. Biol. Med. 43(12), 2136–2155 (2013)CrossRefGoogle Scholar
  12. 12.
    Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  13. 13.
    Welikala, R., Dehmeshki, J., Hoppe, A., Tah, V., Mann, S., Williamson, T., Barman, S.: Automated detection of proliferative diabetic retinopathy using a modified line operator and dual classification. Comput. Methods Programs Biomed. 114(3), 247–261 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sudeshna Sil Kar
    • 1
  • Santi P. Maity
    • 1
    Email author
  • Seba Maity
    • 2
  1. 1.Department of Information TechnologyIndian Institute of Engineering Science and Technology, ShibpurHowrahIndia
  2. 2.Department of Electronics and Telecommunication EngineeringCollege of Engineering and Management, KolaghatKolaghatIndia

Personalised recommendations