Eigen Domain Transformation for Soft-Margin Multiple Feature-Kernel Learning for Surveillance Face Recognition

  • Samik BanerjeeEmail author
  • Sukhendu Das
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)


Face Recognition (FR) is the most accepted method of biometric authentication due to its inherent passive nature. This has attracted a lot of researchers over past few decades to achieve an moderately high accuracy under controlled environments. In order to achieve such an accuracy for FR under surveillance scenario has been proved to be a major hurdle in this area of research, mainly due to the difference in resolution, contrast, illumination and camera parameters of the training and the testing samples. In this paper, we propose a novel technique to find the optimal feature-kernel combination by SML_MFKC (Soft-margin Learning for Multi-Feature-Kernel Combination) to solve the problem of FR in surveillance, followed by an Eigen Domain Transformation (EDT) to bridge the gap between the distributions of the gallery and the probe samples. Rigorous experimentation has been performed on three real-world surveillance face datasets : FR_SURV [24], SCface [17] and ChokePoint [35]. Results have been shown using Rank-1 Recognition rates, ROC and CMC measures. Our proposed method outperforms all other recent state-of-the-art techniques by a considerable margin. Experimentations also show that the recent state-of-the-art Deep Learning techniques also fail to perform appreciably compared to our proposed method for the afore-mentioned datasets.


Kernel selection Surveillance Multiple kernel learning Domain adaptation RKHS Hallucination 


  1. 1.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE T-PAMI 28(12), 2037–2041 (2006)CrossRefzbMATHGoogle Scholar
  2. 2.
    An, L., Kafai, M., Bhanu, B.: Dynamic bayesian network for unconstrained face recognition in surveillance camera networks. IEEE JESCTS 3(2), 155–164 (2013)Google Scholar
  3. 3.
    Arandjelovic, R., Zisserman, A.: All about VLAD. In: IEEE CVPR, pp. 1578–1585 (2013)Google Scholar
  4. 4.
    Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Incremental face alignment in the wild. In: CVPR (2014)Google Scholar
  5. 5.
    Bach, F.R., Lanckriet, G.R., Jordan, M.I.: Multiple kernel learning, conic duality, and the SMO algorithm. In: ICML, p. 6. ACM (2004)Google Scholar
  6. 6.
    Banerjee, S., Das, S.: Kernel selection using multiple kernel learning and domain adaptation in reproducing kernel hilbert space, for face recognition under surveillance scenario. arXiv preprint arXiv:1610.00660 (2016)
  7. 7.
    Banerjee, S., Das, S.: Soft-margin learning for multiple feature-kernel combinations with domain adaptation, for recognition in surveillance face dataset. In: IEEE Biometrics Workshop, CVPRW, pp. 169–174 (2016)Google Scholar
  8. 8.
    Banerjee, S., Samanta, S., Das, S.: Face recognition in surveillance conditions with bag-of-words, using unsupervised domain adaptation. In: ICVGIP. ACM (2014)Google Scholar
  9. 9.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs fisherfaces: recognition using class specific linear projection. IEEE T-PAMI 19(7), 711–720 (1997)CrossRefGoogle Scholar
  10. 10.
    Biswas, S., Bowyer, K.W., Flynn, P.J.: Multidimensional scaling for matching low-resolution face images. IEEE T-PAMI 34(10), 2019–2030 (2012)CrossRefGoogle Scholar
  11. 11.
    Duan, L., Xu, D., Tsang, I.W.: Domain adaptation from multiple sources: a domain-dependent regularization approach. IEEE T-NNLS 23(3), 504–518 (2012)Google Scholar
  12. 12.
    Dym, H.: J Contractive Matrix Functions, Reproducing Kernel Hilbert Spaces and Interpolation, vol. 71. American Mathematical Soc., Providence (1989)CrossRefzbMATHGoogle Scholar
  13. 13.
    Fernando, B., Habrard, A., Sebban, M., Tuytelaars, T.: Unsupervised visual domain adaptation using subspace alignment. In: IEEE ICCV (2013)Google Scholar
  14. 14.
    Filliat, D.: A visual bag of words method for interactive qualitative localization and mapping. In: IEEE ICRA (2007)Google Scholar
  15. 15.
    Gehler, P., Nowozin, S.: On feature combination for multiclass object classification. In: IEEE ICCV, IEEE (2009)Google Scholar
  16. 16.
    Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In IEEE ICCV, pp. 999–1006 (2011)Google Scholar
  17. 17.
    Grgic, M., Delac, K., Grgic, S.: Scface-surveillance cameras face database. Multimedia Tools Appl. 51(3), 863–879 (2011)CrossRefGoogle Scholar
  18. 18.
    Lanckriet, G.R., De Bie, T., Cristianini, N., Jordan, M.I., Noble, W.S.: A statistical framework for genomic data fusion. Bioinformatics 20(16), 2626–2635 (2004)CrossRefGoogle Scholar
  19. 19.
    Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE TIP 11(4), 467–476 (2002)Google Scholar
  20. 20.
    Pan, S.J., Tsang, I.W., Kwok, J.T., Yang, Q.: Domain adaptation via transfer component analysis. IEEE T-NN 22(2), 199–210 (2011)CrossRefGoogle Scholar
  21. 21.
    Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. BMVC 1(3), 6 (2015)Google Scholar
  22. 22.
    Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15561-1_11 CrossRefGoogle Scholar
  23. 23.
    Ren, C.-X., Dai, D.-Q., Yan, H.: Coupled kernel embedding for low-resolution face image recognition. IEEE TIP 21(8), 3770–3783 (2012)zbMATHMathSciNetGoogle Scholar
  24. 24.
    Rudrani, S., Das, S.: Face recognition on low quality surveillance images, by compensating degradation. In: Kamel, M., Campilho, A. (eds.) ICIAR 2011. LNCS, vol. 6754, pp. 212–221. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21596-4_22 CrossRefGoogle Scholar
  25. 25.
    Samanta, S., Das, S.: Unsupervised domain adaptation using eigenanalysis in kernel space for categorisation tasks. IET Image Process. 9(11), 925–930 (2015)CrossRefGoogle Scholar
  26. 26.
    Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)Google Scholar
  27. 27.
    Shrivastava, A., Patel, V.M., Chellappa, R.: Multiple kernel learning for sparse representation-based classification. IEEE TIP 23(7), 3013–3024 (2014)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large scale multiple kernel learning. JMLR 7, 1531 (2006)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Sugiyama, M., Nakajima, S., Kashima, H., von Bünau, P., Kawanabe, M.: Direct importance estimation with model selection and its application to covariate shift adaptation. In: NIPS, pp. 1962–1965 (2007)Google Scholar
  30. 30.
    Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: IEEE CVPR, pp. 1891–1898 (2014)Google Scholar
  31. 31.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)CrossRefGoogle Scholar
  32. 32.
    Viola, P., Jones, M.J.: Robust real-time face detection. IJCV 57(2), 137–154 (2004)CrossRefGoogle Scholar
  33. 33.
    Wang, B., Li, W., Yang, W., Liao, Q.: Illumination normalization based on weber’s law with application to face recognition. IEEE SPL 18(8), 462–465 (2011)Google Scholar
  34. 34.
    Wang, C., Mahadevan, S.: Heterogeneous domain adaptation using manifold alignment. In: IJCAI, vol. 22, p. 1541 (2011)Google Scholar
  35. 35.
    Wong, Y., Chen, S., Mau, S., Sanderson, C., Lovell, B.C.: Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition. In: IEEE Biometrics Workshop, CVPRW (June 2011)Google Scholar
  36. 36.
    Xu, X., Tsang, I.W., Xu, D.: Soft margin multiple kernel learning. IEEE T-NNLS 24(5), 749–761 (2013)Google Scholar
  37. 37.
    Yang, J., Yan, R., Hauptmann, A.: Cross-domain video detection using adaptive svms. In: ICM. ACM (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CSEIIT MadrasChennaiIndia

Personalised recommendations