Brain Tumor Segmentation from Multimodal MR Images Using Rough Sets

  • Rupsa SahaEmail author
  • Ashish Phophalia
  • Suman K. Mitra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)


Automatic segmentation of brain tumors from Magnetic Resonance images is a challenging task due to the wide variation in intensity, size, location of tumors in images. Defining a precise boundary for a tumor is essential for diagnosis and treatment of patients. Rough set theory, an extension of classical set theory, deals with the vagueness of data by determining the boundary region of a set. The aim of this work is to explore the possibility and effectiveness of using a rough set model to represent the tumor regions in MR images accurately, with Quadtree partitioning and simple K-means as precursors to indicate and limit the possible relevant regions. The advantage of using rough sets lie in its ability to represent the impreciseness of set boundaries, which is one of the major challenges faced in tumor segmentation. Experiments are carried out on the BRATS 2013 and 2015 databases and results are comparable to those reported by recent works.


Brain tumor Magnetic resonance imaging Rough sets 


  1. 1.
    Khosla, D.: Concurrent therapy to enhance radiotherapeutic outcomes in glioblastoma. Ann. Transl. Med. 4(3) (2016)Google Scholar
  2. 2.
    Krupa, K., Bekiesińska-Figatowska, M.: Artifacts in magnetic resonance imaging. Pol. J. Radiol. 80, 93 (2015)CrossRefGoogle Scholar
  3. 3.
    Schild, H.H.: MRI Made Easy. Berlex Laboratories, Whippany (1999)Google Scholar
  4. 4.
    Vovk, U., Pernuš, F., Likar, B.: A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 26(3), 405–421 (2007)CrossRefGoogle Scholar
  5. 5.
    Christine Fennema-Notestine, I., Ozyurt, B., Clark, C.P., Morris, S., Bischoff-Grethe, A., Bondi, M.W., Jernigan, T.L., Fischl, B., Segonne, F., Shattuck, D.W., et al.: Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location. Hum. Brain Mapp. 27(2), 99–113 (2006)CrossRefGoogle Scholar
  6. 6.
    Stadlbauer, A., Moser, E., Gruber, S., Buslei, R., Nimsky, C., Fahlbusch, R., Ganslandt, O.: Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1 H-MRSI metabolites in gliomas. Neuroimage 23(2), 454–461 (2004)CrossRefGoogle Scholar
  7. 7.
    Kaus, M.R., Warfield, S.K., Nabavi, A., Black, P.M., Jolesz, F.A., Kikinis, R.: Automated segmentation of MR images of brain tumors. Radiology 218(2), 586–591 (2001)CrossRefGoogle Scholar
  8. 8.
    Gibbs, P., Buckley, D.L., Blackband, S.J., Horsman, A.: Tumour volume determination from mr images by morphological segmentation. Phys. Med. Biol. 41(11), 2437 (1996)CrossRefGoogle Scholar
  9. 9.
    Nakhmani, A., Kikinis, R., Tannenbaum, A.: MRI brain tumor segmentation and necrosis detection using adaptive sobolev snakes. In: SPIE Medical Imaging, p. 903442. International Society for Optics and Photonics (2014)Google Scholar
  10. 10.
    Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31(8), 1426–1438 (2013)CrossRefGoogle Scholar
  11. 11.
    Hall, L.O., Bensaid, A.M., Clarke, L.P., Velthuizen, R.P., Silbiger, M.S., Bezdek, J.C.: A comparison of neural network, fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE Transactions on Neural Networks 3(5), 672–682 (1992)Google Scholar
  12. 12.
    Zhou, J., Chan, K.L., Chong, V.F.H., Krishnan, S.M.: Extraction of brain tumor from MR images using one-class support vector machine. In: 27th Annual International Conference of the Engineering in Medicine and Biology Society. IEEE-EMBS 2005, pp. 6411–6414. IEEE (2006)Google Scholar
  13. 13.
    Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Cuadra, M.B.: A review of atlas-based segmentation for magnetic resonance brain images. Comput. Methods Prog. Biomed. 104(3), e158–e177 (2011)CrossRefGoogle Scholar
  14. 14.
    Hirano, S., Tsumoto, S.: Segmentation of medical images based on approximations in rough set theory. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS, vol. 2475, pp. 554–563. Springer, Heidelberg (2002). doi: 10.1007/3-540-45813-1_73 CrossRefGoogle Scholar
  15. 15.
    Maji, P., Roy, S.: Rough-fuzzy clustering and unsupervised feature selection for wavelet based MR image segmentation. PLoS ONE 10(4), e0123677 (2015)CrossRefGoogle Scholar
  16. 16.
    Pawlak, Z.: Rough sets. Int. J. Parallel Program. 11, 341–356 (1982)zbMATHGoogle Scholar
  17. 17.
    Menze, B., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging, 33 (2014)Google Scholar
  18. 18.
    Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013)CrossRefGoogle Scholar
  19. 19.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar
  20. 20.
    MICCAI. MICCAI Brain Tumor Image Segmentation Challenge-BRATS, Boston, Massachusetts, September 2014Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Dhirubhai Ambani Institute of Information and Communication TechnologyGandhinagarIndia
  2. 2.Indian Institute of Information TechnologyGandhinagarIndia

Personalised recommendations