Advertisement

Recursive Structure from Motion

  • M. ChebiyyamEmail author
  • S. Chaudhury
  • I. N. Kar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)

Abstract

In this paper we present a technique that estimates the Structure from Motion (SFM) in a recursive fashion. Traditionally successful SFM algorithms take the set of images and estimate the scene geometry and camera positions either using incremental algorithms or the global algorithms and do the refinement process [2] to reduce the reprojection error. In this work it is assumed that we don’t have complete image set at the start of the reconstruction process, unlike most of the traditional approaches present in the literature. It is assumed that the set of images come in at the regular intervals and we recursively perform the SFM on the incoming set of images and update the previously reconstructed structure with the structure estimated from the current set of images. The proposed system has been tested on two datasets which consist of 12 images and 60 images respectively and reconstructions obtained show the validity of our proposed technique.

Keywords

Structure from Motion Similariy transformation Recursive update 

References

  1. 1.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: International Conference on Computer Vision (ICCV), Kyoto, Japan (2009)Google Scholar
  2. 2.
    Agarwal, S., Snavely, N., Seitz, S.M., Szeliski, R.: Bundle adjustment in the large. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 29–42. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15552-9_3 CrossRefGoogle Scholar
  3. 3.
    Wilson, K., Snavely, N.: Robust global translations with 1DSfM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 61–75. Springer, Cham (2014). doi: 10.1007/978-3-319-10578-9_5 Google Scholar
  4. 4.
    Crandall, D., Owens, A., Snavely, N., Huttenlocher, D.P.: Discrete-continuous optimization for large-scale structure from motion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  5. 5.
    Chatterjee, A., Govindu, V.M.: Efficient and robust large-scale rotation averaging. In: Proceedings of International Conference on Computer Vision (ICCV) (2013)Google Scholar
  6. 6.
    Wu, C.: Towards linear-time incremental structure from motion. In: Proceedings of the 2013 International Conference on 3D Vision (3DV 2013), pp. 127–134. IEEE Computer Society, Washington, D.CGoogle Scholar
  7. 7.
    Olsson, C., Enqvist, O.: Stable structure from motion for unordered image collections. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 524–535. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21227-7_49 CrossRefGoogle Scholar
  8. 8.
    Enqvist, O., Kahl, F., Olsson, C.: Non-sequential structure from motion. IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 264–271 (2011)Google Scholar
  9. 9.
    Mordohai, P., Frahm, J.M., Akbarzadeh, A., Clipp, B., Engels, C., Gallup, D., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewnius, H., Towles, H., Welch, G., Yang, R., Pollefeys, M., Nistr, D.: Real-time video-based reconstruction of urban environments. In: 3D-ARCH 2007: 3D Virtual Reconstruction and Visualization of Complex Architectures, Zurich, Switzerland, July 2007Google Scholar
  10. 10.
    Clipp, B., Welch, G., Frahm, J.-M., Pollefeys, M.: Structure from motion via a two-stage pipeline of extended Kalman filters. In: Proceedings of the British Machine Vision Conference 2007 (BMVC 2007), British Machine Vision Association, BMVA (2007)Google Scholar
  11. 11.
    Pollefeys, M., Nistr, D., Frahm, J.-M., Akbarzadeh, A., Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim, S.J., Merrell, P., Salmi, C., Sinha, S., Talton, B., Wang, L., Yang, Q., Stewnius, H., Yang, R., Welch, G., Towles, H.: Detailed real-time urban 3D reconstruction from video. Int. J. Comput. Vis. 78(2–3), 143–167 (2008)CrossRefGoogle Scholar
  12. 12.
    Clipp, B., Raguram, R., Frahm, J.-M., Welch, G., Pollefeys, M.: A mobile 3D city reconstruction system. In: IEEE VR workshop on Cityscapes, March 2008Google Scholar
  13. 13.
    Beardsley, P.A., Zisserman, A., Murray, D.W.: Sequential updating of projective and affine structure from motion. Int. J. Comput. Vis. 23(3), 235–259 (1997)CrossRefGoogle Scholar
  14. 14.
    Bleser, G., Becker, M., Stricker, D.: Real-time vision-based tracking and reconstruction. J. Real-Time Image Proc. 2(2–3), 161–175 (2007)CrossRefGoogle Scholar
  15. 15.
    Eade, E., Drummond, T.: Scalable monocular SLAM. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (CVPR 2006), vol. 1, pp. 469–476. IEEE Computer Society, Washington, D.C. (2006)Google Scholar
  16. 16.
    Welch, G., Bishop, G.: An introduction to the Kalman filter. In: Tutorial of SIGGRAPH 2001, pp. 1–81 (2001)Google Scholar
  17. 17.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)CrossRefGoogle Scholar
  18. 18.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 2161–2168. IEEE Computer Society, Washington, D.C. (2006)Google Scholar
  19. 19.
    Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: Proceedings of the 11th International Conference on Computer Vision, Rio de Janeiro, Brazil (2007)Google Scholar
  20. 20.
    Charnes, A., Frome, E.L., Yu, P.L.: The equivalence of generalized least squares and maximum likelihood estimates in the exponential family. J. Am. Stat. Assoc. 71(353), 169–171 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Fischler, M.A., Bolles, R.C.: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). doi: 10.1145/358669.358692 CrossRefGoogle Scholar
  23. 23.
  24. 24.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9(2), 13–154 (1992)CrossRefGoogle Scholar
  25. 25.
    Morita, T., Kanade, T.: A sequential factorization method for recovering shape and motion from image streams. Pattern Anal. Mach. Intell. 19(8), 858–867 (1997)CrossRefGoogle Scholar
  26. 26.
    Kennedy, R., Balzano, L., Wright, S.J., Taylor, C.J.: Online algorithms for factorization-based structure from motion. Comput. Vis. Image Underst. (2016). http://dblp.uni-trier.de/rec/bib/journals/corr/KennedyBWT13

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Electrical EngeneeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations