A Novel Intelligent Multiple Watermarking Schemes for the Protection of the Information Content of a Document Image

  • K. R. ChetanEmail author
  • S. Nirmala
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10481)


Most of the past document image watermarking schemes focus on providing same level of integrity and copyright protection for information present in the source document image. However, in a document image the information contents possess various levels of sensitivity. Each level of sensitivity needs different type of protection and this demands multiple watermarking techniques. In this paper, a novel intelligent multiple watermarking techniques are proposed. The sensitivity of the information content of a block is based on the homogeneity and relative energy contribution parameters. Appropriate watermarking scheme is applied based on sensitivity classification of the block. Experiments are conducted exhaustively on documents. Experimental results reveal the accurate identification of the sensitivity of information content in the block. The results reveal that multiple watermarking schemes has reduced the amount of data to be embedded and consequently improved perceptual quality of the watermarked image.


Multiple watermarking Intelligent watermarking Fragile watermarking Robust watermarking Integer wavelets Contourlets Gradient binarized blocks GLCM 


  1. 1.
    Wu, M., Liu, B.: Watermarking for image authentication. In: Proceedings of the IEEE International Conference on Image Processing, pp. 437–441 (1998)Google Scholar
  2. 2.
    Cox, I., Miller, M., Bloom, J., Fridrich, J., Kalker, T.: Digital Watermarking And Steganography. Morgan Kaufmann Publishers Inc., San Francisco (2007)Google Scholar
  3. 3.
    Hartung, F., Kutter, M.: Mutimedia Watermarking Techniques. Proc. IEEE 87(7), 1079–1107 (2002)CrossRefGoogle Scholar
  4. 4.
    Potdar, V.M., Han, S., Chang, E.: A survey of digital image watermarking techniques. In: 3rd IEEE International Conference on Industrial Informatics, pp. 709–716 (2005). doi: 10.1109/Indin.2005.1560462
  5. 5.
    Mirza, H., Thai, H., Nakao, Z.: Color image watermarking and self-recovery based on independent component analysis. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS, vol. 5097, pp. 839–849. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-69731-2_80 CrossRefGoogle Scholar
  6. 6.
    Wang, M.S., Chen, W.C.: A majority-voting based watermarking scheme for color image tamper detection and recovery. Comput. Stand. Interfaces 29, 561–571 (2007)CrossRefGoogle Scholar
  7. 7.
    Bas, P., Chassery, J.M., Macq, B.: Geometrically invariant watermarking using feature points. IEEE Trans. Image Process. 11(9), 1014–1028 (2002)CrossRefGoogle Scholar
  8. 8.
    Qi, W., Li, X., Yang, B., Cheng, D.: Document watermarking scheme for information tracking. J. Commun. 29(10), 183–190 (2008)Google Scholar
  9. 9.
    Dawei, Z., Guanrong, C., Wenbo, L.: A chaos-based robust wavelet-domain watermarking algorithm. Chaos, Solitons Fractals 22(1), 47–54 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Schirripa, G., Simonetti, C., Cozzella, L.: Fragile digital watermarking by synthetic holograms. In: Proceedings of the European Symposium on Optics/Fotonics in Security & Defence, London, pp. 173–182 (2004)Google Scholar
  11. 11.
    Houmansadr, A., et al.: Robust content-based video watermarking exploiting motion entropy masking effect. In: Proceedings of the International Conference on Signal Processing and Multimedia Applications, pp. 252–259 (2006)Google Scholar
  12. 12.
    Kankanhalli, M.S., Ramakrishnan, K.R.: Adaptive visible watermarking of images. In: IEEE International Conference on Multimedia Computing and Systems, vol. 1, pp. 568–573 (1999)Google Scholar
  13. 13.
    Radharani, S., et al.: A study on watermarking schemes for image authentication. Int. J. Comput. Appl. (0975 – 8887) 2(4), 24–32 (2010)Google Scholar
  14. 14.
    Kay, S., Izquierdo, E.: Robust content based image watermarking. In: Proceedings of the Workshop on Image Analysis for Multimedia Interactive Services (2001)Google Scholar
  15. 15.
    Kim, M.-A., Lee, W.-H.: A content-based fragile watermarking scheme for image authentication. In: Chi, C.-H., Lam, K.-Y. (eds.) AWCC 2004. LNCS, vol. 3309, pp. 258–265. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30483-8_31 CrossRefGoogle Scholar
  16. 16.
    Habib, M., Sarhan, S., Rajab, L.: A Robust-Fragile dual watermarking system in the DCT domain. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS, vol. 3682, pp. 548–553. Springer, Heidelberg (2005). doi: 10.1007/11552451_74 CrossRefGoogle Scholar
  17. 17.
    Shieh, C.-S., et al.: Genetic watermarking based on transform-domain techniques. J. Pattern Recogn. 37, 555–565 (2004)CrossRefGoogle Scholar
  18. 18.
    Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1992)Google Scholar
  19. 19.
    Lu, Z.-M., Xu, D.-G., Sun, S.-H.: Multipurpose image watermarking algorithm based on multistage vector quantization. IEEE Trans. Image Process. 14(6), 822–831 (2005). doi: 10.1109/Tip.2005.847324 CrossRefGoogle Scholar
  20. 20.
    Sheppard, N.P., Safavi-Naini, R., Ogunbona, P.: On multiple watermarking. In: Dittmann, J., Nahrstedt, K., Wohlmacher, D. (eds.) Multimedia and Security: New Challenges Workshop, p. 38871 (2001)Google Scholar
  21. 21.
    Voloshynovskiy, S., Pereira, S., Pun, T., Eggers, J.J., Su, J.K.: Attacks on digital watermarks: classification, estimation based attacks, and benchmarks. IEEE Commun. Mag. 39(8), 118–126 (2001)CrossRefGoogle Scholar
  22. 22.
    Wang, S., Zhang, X.: Watermarking scheme capable of resisting sensitivity attack. IEEE Signal Process. Lett. 14(2), 125–128 (2007)CrossRefGoogle Scholar
  23. 23.
    Chetan, K.R., Nirmala, S.: An efficient and secure robust watermarking scheme for document images using integer wavelets and block coding of binary watermarks. J. Inf. Secur. Appl. 24–25, 13–24 (2015)Google Scholar
  24. 24.
    Chetan, K.R., Nirmala, S.: A novel fragile watermarking scheme based on contourlets for effective tamper detection, localization and recovery of handwritten document images. IEEE Signal Process. Lett. (Communicated)Google Scholar
  25. 25.
    Aggarwal, E.D.: An efficient watermarking algorithm to improve payload and robustness without affecting image perceptual quality. J. Comput. 2(4) (2010). ISSN 2151-9617Google Scholar
  26. 26.
    Zhu, X., et al.: Normalized correlation-based quantization modulation for robust watermarking. IEEE Trans. Multimed. 16(7), 1888–1904 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of CSEJNN College of EngineeringShimogaIndia

Personalised recommendations