Skip to main content

Universality in Systems with Power-Law Memory and Fractional Dynamics

  • Chapter
  • First Online:
Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

There are a few different ways to extend regular nonlinear dynamical systems by introducing power-law memory or considering fractional differential/difference equations instead of integer ones. This extension allows the introduction of families of nonlinear dynamical systems converging to regular systems in the case of an integer power-law memory or an integer order of derivatives/differences. The examples considered in this review include the logistic family of maps (converging in the case of the first order difference to the regular logistic map), the universal family of maps, and the standard family of maps (the latter two converging, in the case of the second difference, to the regular universal and standard maps). Correspondingly, the phenomenon of transition to chaos through a period doubling cascade of bifurcations in regular nonlinear systems, known as “universality”, can be extended to fractional maps, which are maps with power-/asymptotically power-law memory. The new features of universality, including cascades of bifurcations on single trajectories, which appear in fractional (with memory) nonlinear dynamical systems are the main subject of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlin. Sci. Numer. Simul. 19, 29512957 (2014)

    Google Scholar 

  2. Anderson, J.R.: Learning and Memory: An Integrated Approach. Wiley, New York 1(995)

    Google Scholar 

  3. Anastassiou, G.A.: Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Modelling 51, 562–571 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atici, F., Eloe, P.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981–989 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Atici, F., Eloe P.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. Spec. Ed. I3, 1–12 (2009)

    Google Scholar 

  6. Baleanu, D., Wu, G.-C., Bai, Y.-R., Chen, F.-L.: Stability analysis of Caputo-like discrete fractional systems. Commun. Nonlin. Sci. Numer. Simul. 48, 520–530 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Discrete-time fractional variational problems. Signal Process. 91, 513–524 (2011)

    Article  MATH  Google Scholar 

  8. Bastos, N.R.O., Ferreira, R.A.C., Torres, D.F.M.: Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete Contin. Dyn. Syst. 29, 417–437 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, F., Luo, X., and Zhou, Y.: Existence results for nonlinear fractional difference equation. Adv. Differ. Eq. 2011, 713201, (2011)

    Google Scholar 

  10. Cvitanovic, P.: Universality in Chaos. Adam Hilger, Bristol and New York (1989)

    MATH  Google Scholar 

  11. Edelman, M.: Fractional standard map: Riemann-Liouville vs. Caputo. Commun. Nonlin. Sci. Numer. Simul. 16, 4573–4580 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edelman, M.: Fractional maps and fractional attractors. Part I: \(\alpha \)-families of maps. Discontinuity Nonlinearity Complex. 1, 305–324 (2013)

    Google Scholar 

  13. Edelman, M.: Universal fractional map and cascade of bifurcations type attractors. Chaos 23, 033127 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  14. Edelman, M.: Universality in fractional dynamics. In: International Conference on Fractional Differentiation and Its Applications (ICFDA), 2014, pp. 1–6 (2014). https://doi.org/10.1109/ICFDA.2014.6967376

  15. Edelman, M.: Fractional maps as maps with power-law memory. In: Afraimovich, A., Luo, A.C.J., Fu, X. (eds.) Nonlinear Dynamics and Complexity; Series: Nonlinear Systems and Complexity, pp. 79–120, Springer, New York (2014)

    Google Scholar 

  16. Edelman, M.: Caputo standard \(\alpha \)-family of maps: fractional difference vs. fractional. Chaos 24, 023137 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Edelman, M.: Fractional maps and fractional attractors. Part II: Fractional Difference \(\alpha \)-Families of Maps. Discontinuity Nonlinearity Complex 4, 391–402 (2015)

    Google Scholar 

  18. Edelman, M.: On the fractional Eulerian numbers and equivalence of maps with long term power-law memory (integral Volterra equations of the second kind) to Gr\(\ddot{u}\)nvald-Letnikov fractional difference (differential) equations. Chaos 25, 073103 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Edelman, M., Tarasov, V.E.: Fractional standard map. Phys. Lett. A 374, 279–285 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Edelman, M., Taieb, L.A.: New types of solutions of non-linear fractional differential equations. In: Almeida, A., Castro, L., Speck F.-O. (eds.) Advances in Harmonic Analysis and Operator Theory; Series: Operator Theory: Advances and Applications, vol. 229, pp. 139–155. Springer, Basel (2013)

    Google Scholar 

  21. Fairhall, A.L., Lewen, G.D., Bialek, W., de Ruyter van Steveninck R.R.: Efficiency and ambiguity in an adaptive neural code. Nature 787–792 (2001)

    Google Scholar 

  22. Ferreira, R.A.C., Torres, D.F.M.: Fractional h-difference equations arising from the calculus of variations. Appl. Anal. Discrete Math. 5, 110–121 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Frederico, G.S.F., Torres, D.F.M.: A formulation of Noether’s theorem for fractional problems of the calculus of variations. J. Math. Appl. Anal. Appl. 334, 834–846 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gray, H.L., Zhang, N.-F.: On a new definition of the fractional difference. Math. Comput. 50, 513–529 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kahana, M.J.: Foundations of human memory. Oxford University Press, New York (2012)

    Google Scholar 

  26. Kilbas, A.A., Bonilla, B., Trujillo, J.J.: Nonlinear differential equations of fractional order is space of integrable functions. Dokl. Math. 62, 222–226 (2000)

    MATH  Google Scholar 

  27. Kilbas, A.A., Bonilla, B., Trujillo, J.J.: Existence and uniqueness theorems for nonlinear fractional differential equations. Demonstratio Math. 33, 583–602 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  29. Leopold, D.A., Murayama, Y., Logothetis, N.K.: Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cerebr. Cortex 413, 422–433 (2003)

    Article  Google Scholar 

  30. Li, Y., Chen, Y.Q., and Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 181021 (2010)

    Google Scholar 

  31. Lundstrom, B.N., Fairhall, A.L., Maravall, M.: Multiple time scale encoding of slowly varying whisker stimulus envelope incortical and thalamic neurons in vivo. J. Neurosci 30, 5071–5077 (2010)

    Article  Google Scholar 

  32. Lundstrom, B.N., Higgs, M.H., Spain, W.J., Fairhall, A.L.: Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci 11, 1335–1342 (2008)

    Article  Google Scholar 

  33. Machado, J.A.T, Pinto, C.M.A., Lopes, A.M.: A review on the characterization of signals and systems by power law distributions. Signal Process. 107, 246–253 (2015)

    Google Scholar 

  34. Matignon, D.: Stability properties for generalized fractional differential systems. ESAIM Proc. 5, 145–58 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  35. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  MATH  ADS  Google Scholar 

  36. Miller, K.S., Ross, B.: Fractional difference calculus. In: Srivastava, H.M., Owa, S. (eds.) Univalent Functions. Fractional Calculus, and Their Applications, pp. 139–151. Ellis Howard, Chichester (1989)

    Google Scholar 

  37. Mozyrska, D., Girejko, E.: Overview of the fractional h-difference operators. In: Almeida, A., Castro, L., Speck F.-O. (eds.) Advances in Harmonic Analysis and Operator Theory; Series: Operator Theory: Advances and Applications, vol. 229, pp. 253–267. Springer, Basel (2013)

    Google Scholar 

  38. Mozyrska, D., Girejko, E., Wirwas, M.: Fractional nonlinear systems with sequential operators. Cent. Eur. J. Phys. 11, 1295–1303 (2013)

    Google Scholar 

  39. Mozyrska, D., Pawluszewicz, E.: Local controllability of nonlinear discrete-time fractional order systems. Bull. Pol. Acad. Sci. Techn. Sci. 61, 251–256 (2013)

    MATH  Google Scholar 

  40. Mozyrska, D., Pawluszewicz, E., Girejko, E.: Stability of nonlinear h-difference systems with N fractional orders. Kibernetica 51, 112–136 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Petras, I.: Fractional-Order Nonlinear Systems. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  42. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  43. Pozzorini, C., Naud, R., Mensi, S., Gerstner, W.: Temporal whitening by power-law adaptation in neocortical neurons. Nat.Neurosci. 16, 942–948 (2013)

    Article  Google Scholar 

  44. Rivero, M., Rogozin, S.V., Machado, J.A.T., Trujilo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 356215 (2013)

    Article  MathSciNet  Google Scholar 

  45. Rubin, D.C., Wenzel, A.E.: One hundred years of forgetting: a quantitative description of retention. Psychol. Rev. 103, 743–760 (1996)

    Article  Google Scholar 

  46. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  47. Stanislavsky, A.A: Long-term memory contribution as applied to the motion of discrete dynamical system. Chaos 16, 043105 (2006)

    Google Scholar 

  48. Tarasov, V.E.: Differential equations with fractional derivative and universal map with memory. J. Phys. A 42, 465102 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  49. Tarasov, V.E.: Discrete map with memory from fractional differential equation of arbitrary positive order. J. Math. Phys. 50, 122703 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  50. Tarasov, V.E.: Fractional dynamics: application of fractional calculus to dynamics of particles. In: Fields and Media. HEP, Springer, Heidelberg (2011)

    Google Scholar 

  51. Tarasov, V.E., Zaslavsky, G.M.: Fractional equations of kicked systems and discrete maps. J. Phys. A 41, 435101 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  52. Toib, A., Lyakhov, V., Marom, S.: Interaction between duration of activity and recovery from slow inactivation in mammalian brain Na+ channels. J. Neurosci. 18, 1893–1903 (1998)

    Google Scholar 

  53. Ulanovsky, N., Las, L., Farkas, D., Nelken, I.: Multiple time scales of adaptation in auditory cortex neurons. J Neurosci. 24, 10440–10453 (2004)

    Article  Google Scholar 

  54. Wixted, J.T.: Analyzing the empirical course of forgetting. J. Exp. Psychol. Learn. Mem. Cognit. 16, 927–935 (1990)

    Article  Google Scholar 

  55. Wixted, J.T., Ebbesen, E.: On the form of forgetting. Psychol. Sci. 2, 409–415 (1991)

    Article  Google Scholar 

  56. Wixted, J.T., Ebbesen, E.: Genuine power curves in forgetting. Mem. Cognit. 25, 731–739 (1997)

    Article  Google Scholar 

  57. Wu, G.-C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlin. Dyn. 75, 283–287 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wu, G.-C., Baleanu, D., Zeng, S.-D.: Discrete chaos in fractional sine and standard maps. Phys. Lett. A 378, 484–487 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  59. Wyrwas, M., Pawluszewicz, E., Girejko, E.: Stability of nonlinear \(h\)-difference systems with \(N\) fractional orders. Kybernetika 15, 112–136 (2015)

    MathSciNet  MATH  Google Scholar 

  60. Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  61. Zaslavsky, G.M., Stanislavsky, A.A.., Edelman, M: Chaotic and pseudochaotic attractors of perturbed fractional oscillator. Chaos 16, 013102 (2006)

    Google Scholar 

  62. Zilany, M.S., Bruce, I.C., Nelson, P.C., Carney, L.H.: A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J. Acoust. Soc. Am. 126, 2390–2412 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author expresses his gratitude to R. Cole and R. V. Kohn, for the opportunity to complete this work at the Courant Institute. The author is grateful to the organizers of the 6th International Conference on Nonlinear Science and Complexity in Sao Jose dos Campos, Brazil, for financial support. The author acknowledges continuing support from Yeshiva University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Edelman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edelman, M. (2018). Universality in Systems with Power-Law Memory and Fractional Dynamics. In: Edelman, M., Macau, E., Sanjuan, M. (eds) Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-68109-2_8

Download citation

Publish with us

Policies and ethics