Skip to main content

Runaway Barrier Island Transgression Concept: Global Case Studies

  • Chapter
  • First Online:
Barrier Dynamics and Response to Changing Climate

Abstract

The regime of accelerating sea-level rise forecasted by the IPCC (2013) suggests that many platform marshes and tidal flats may soon cross a threshold and deteriorate/drown as back-barrier basins transform to intertidal and subtidal areas. This chapter explores how marshes may succumb to rising sea level and how the loss of wetlands will increase the extent and the overall depth of open water in the back-barrier, causing greater tidal exchange. Here, we present a conceptual model that depicts how increasing tidal prism enlarges the size of tidal inlets and sequesters an increasingly larger volume of sand in ebb-tidal delta shoals. The conceptual model is based on empirical relationships between tidal prism and inlet parameters, as well as field and theoretical hydraulic studies of tidal inlets showing that long-term basinal deepening intensifies the flood dominance of existing inlet channels and transforms some ebb-dominated channels to flood-dominated channels. This condition leads to sand movement into the back-barrier, which builds and enlarges flood-tidal deltas, filling the newly created accommodation space. The model hypothesizes that sand contributed to the growth of the ebb and flood tidal delta shoals will be at the expense of barrier reservoirs. This will result in diminished sand supplies along the coast, eventually leading to fragmentation of barrier island chains and the transition from stable to transgressive coastal systems. Several historical studies of barrier island systems throughout the world demonstrate barrier response to changing tidal prism and illustrate different stages of this conceptual model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ashton AD, Lorenzo-Trueba J (2018) Morphodynamics of barrier response to sea-level rise. In: Moore LJ, Murray AB (eds) Barrier dynamics and response to changing climate. Springer, New York

  • Aubrey D, Speer P (1985) A study of non-linear tidal propagation in shallow inlet/estuarine system. In: Aubrey D, Weishar L (eds) Estuarine, coastal and shelf science, vol 21, pp 185–205

    Google Scholar 

  • Barnhardt W (ed) (2009) Coastal change along the shore of northeastern South Carolina—the South Carolina coastal erosion study: U.S. Geological Survey Circular 1339:77

    Google Scholar 

  • Barras J (2006) Land area change in coastal Louisiana after the 2005 hurricanes—a series of three maps: U.S. Geological Survey Open-File Report 2006-1274. http://pubs.usgs.gov/of/2006/1274/

  • Barras J, Bourgeois P, Handley L (1994) Land loss in coastal Louisiana 1956-90. National Biological Survey, National Wetlands Research Center Open File Report 94:4

    Google Scholar 

  • Beets D, van der Valk L, Stive M (1992) Holocene evolution of the coast of Holland. Mar Geol 103:423–443

    Article  Google Scholar 

  • Belliard J et al (2015) An ecogeomorphic model of tidal channel initiation and elaboration in progressive marsh accretion contexts. J Geophys Res 120:1040–1064

    Article  Google Scholar 

  • Bird E (1985) Coastline changes. A global review. Wiley, New York

    Google Scholar 

  • Boon J (2012) Evidence of sea level acceleration at U.S. and Canada Tide Stations, Atlantic Coast, North America. J Coast Res 28:1437–1445

    Article  Google Scholar 

  • Boon J, Byrne R (1981) On basin hypsometry and the morphodynamic response of coastal inlet systems. Mar Geol 40:27–48

    Article  Google Scholar 

  • Boon JD, Mitchell M (2015) Nonlinear change in sea level observed at North American tide stations. J Coast Res 31(6):1295–1305. https://doi.org/10.2112/JCOASTRES-D-15-00041.1

    Article  Google Scholar 

  • Boyd R, Penland S (1981) Washover of deltaic barriers on the Louisiana coast. Trans Gulf Coast Assoc Geol Soc 31:243–248

    Google Scholar 

  • Boyd R, Bowen A, Hall R (1987) Evolutionary model for transgressive sedimentation on the eastern shore of Nova Scotia. Glaciated coasts. Academic Press Inc., New York, pp 87–114

    Google Scholar 

  • Brinson MM, Christian RR, Blum LK (1995) Multiple states in the sea-level induced transition from terrestrial forest to estuary. Estuaries 18:648–659

    Article  Google Scholar 

  • Bruun P (1988) The Bruun rule of erosion by sea-level rise: a discussion on large-scale two- and three-dimensional usages. J Coast Res 4:627–648

    Google Scholar 

  • Cahoon D, Reed D (1995) Relationships among marsh surface topography, hydro-period, and soil accretion in a deteriorating Louisiana salt marsh. J Coast Res 11:357–369

    Google Scholar 

  • Cherry JA, McKee KL, Grace JB (2009) Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea‐level rise. J Ecol 97:67–77

    Article  Google Scholar 

  • Chmura G et al (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17

    Google Scholar 

  • Christiansen T, Wiberg P, Milligan T (2000) Flow and sediment transport on a tidal salt marsh surface. Estuar Coast Shelf Sci 50:315–331

    Article  Google Scholar 

  • Church JA, Clark PU, Cazenave A, Gregory JM, Jevrejeva S, Levermann A, Merrifield MA, Milne GA, Nerem RS, Nunn PD, Payne AJ, Pfeffer WT, Stammer D, Unnikrishnan AS (2013) Sea level change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Coleman J, Roberts H, Stone G (1998) Mississippi river delta: an overview. J Coast Res 14:698–716

    Google Scholar 

  • Cooper J, Pilkey O (2004) Sea-level rise and shoreline retreat: time to abandon the Bruun rule. Glob Planet Change 43:157–171

    Article  Google Scholar 

  • Cooper J et al (1990) Ephemeral stream mouth bars at flood-breach river mouths: comparison with tidal deltas at barrier inlets. Mar Geol 95:57–70

    Article  Google Scholar 

  • Couvillion B et al (2011) Land area change in coastal Louisiana from 1932 to 2010: U.S. Geological Survey Scientific Investigations Map 3164, scale 1:265,000, 12 p. pamphlet

    Google Scholar 

  • Cowell PJ, Kinsela MA (2018) Shoreface controls on barrier evolution and shoreline change. In: Moore LJ, Murray AB (eds) Barrier dynamics and response to changing climate. Springer, New York

  • D’Alpaos A, Lanzoni S, Marani M, Rinaldo A (2007) Landscape evolution in tidal embayments: modeling the interplay of erosion sedimentation and vegetation dynamics. J Geophys Res 112(1)

    Google Scholar 

  • Dalrymple R, Zaitlin B, Boyd R (1992) Estuarine facies models: conceptual basis and stratigraphic implications: perspective. J Sediment Petrol 62:1130–1146

    Article  Google Scholar 

  • Darby FA, Turner RE (2008) Below- and aboveground biomass of Spartina alterniflora: response to nutrient addition in a Louisiana Salt Marsh. Estuar Coasts 31:326–334

    Article  Google Scholar 

  • Davis R, Hayes M (1984) What is a wave dominated coast? Mar Geol 60:313–329

    Article  Google Scholar 

  • De Vriend H et al (1993) Approaches to long-term modeling of coastal morphology: a review. Coast Eng 21:225–269

    Article  Google Scholar 

  • Dean R, Perlin M (1977) Coastal engineering study of Ocean City Inlet, Maryland. In: Proceedings, coastal sediments 1977, American Society of Civil Engineers, pp 520–540

    Google Scholar 

  • Deaton CD, Hein CJ, Kirwan ML (2017) Barrier-island migration dominates ecogeomorphic feedbacks and drives salt marsh loss along the Virginia Atlantic Coast, USA. Geology 45:123–126

    Article  Google Scholar 

  • Dingler J, Clifton H (1994) Barrier systems of California, Oregon, and Washington. In: Davis R (ed) Geology of Holocene barrier island systems. Springer, Berlin, pp 115–165

    Chapter  Google Scholar 

  • Dissanayake D, Ranasinghe R, Roelvink J (2012) The morphological response of large tidal inlet/basin systems to relative sea level rise. Clim Change 113:253–276

    Article  Google Scholar 

  • Donnelly J et al (2004) Coupling instrumental and geological records of sea-level change: evidence from southern New England of and increase in the rate of sea-level rise in the late 19th century. Geophys Res Lett 31. https://doi.org/10.1029/2003GL018933

  • Doran K et al (2013) National assessment of hurricane-induced coastal erosion hazards: Mid-Atlantic Coast: U.S. Geological Survey Open-File Report 2013–1131, 28 p

    Google Scholar 

  • Dronkers J (1988) Inshore/offshore water exchange in shallow coastal systems. Coast Offshore Ecosyst Interact 22:3–39

    Google Scholar 

  • Dronkers J (1998) Morphodynamics of the Dutch delta. Phys Estuar Coast Seas 297–304

    Google Scholar 

  • Eiser W, Kjerfve B (1986) Marsh topography and hypsometric characteristics of a South Carolina salt marsh basin. Estuar Coast Shelf Sci 23:595–605

    Article  Google Scholar 

  • Erwin R, Sanders G, Prosser D (2004) Changes in lagoonal marsh morphology at selected northeastern Atlantic coast sites of significance to migratory waterbirds. Wetlands 24:891–903

    Article  Google Scholar 

  • Erwin R et al (2006) Surface elevation dynamics in vegetated Spartina marshes versus unvegetated tidal ponds along the Mid- Atlantic Coast, USA, with implications to waterbirds. Estuar Coast 29:96–106

    Article  Google Scholar 

  • Escoffier F (1940) The stability of tidal inlets. Shore Beach 8:114–115

    Google Scholar 

  • Escoffier F (1977) Hydraulics and stability of tidal inlets. U.S. Army Corps of Engineers, Coastal 75

    Google Scholar 

  • Ezer T, Corlett W (2012) Is sea level rise accelerating in the Chesapeake Bay? A demonstration of a novel new approach for analyzing sea level data. Geophys Res Lett 39. https://doi.org/10.1029/2012GL053435

  • Fagherazzi S, Priestas A (2010) Sediments and water fluxes in a muddy coastline: interplay between waves and tidal channel hydrodynamics. Earth Surf Process Landform 35:284–293

    Article  Google Scholar 

  • Fagherazzi S et al (2012) Numerical models of salt marsh evolution: ecological, geomorphic, and climatic factors. Rev Geophys 50

    Google Scholar 

  • Feagin R et al (2009) Does vegetation prevent wave erosion of salt marsh edges? Proc Natl Acad Sci U S A 106:10109–10113

    Article  Google Scholar 

  • Fearnley S et al (2009) Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005. Geo-Mar Lett 29:445–466

    Article  Google Scholar 

  • Fenster MS, FitzGerald DM, Kelley JT, Belknap DF, Buynevich IV, Dickson SM (2001) Net ebb sediment transport in a rock-bound, mesotidal estuary during spring-freshet conditions: Kennebec River Estuary, Maine. Geol Soc Am Bull 113:1522–1531

    Article  Google Scholar 

  • Fenster MS, McBride RA, Trembanis A, Richardson T, Nebel SH (2011) A field test of the theoretical evolution of a mixed-energy barrier coast to a regime of accelerated sea-level rise. The proceedings of the coastal sediments 2011, American Association of Civil Engineers, Miami, FL, pp 216–229

    Google Scholar 

  • Ferrians O (1966) Effects of the earthquake of March 27, 1964, in the Copper River basin area, Alaska. U.S. Geological Survey Professional Paper 543-E 28

    Google Scholar 

  • Field M, Roy P (1984) Offshore transport and sand-body formation: evidence from a steep, high-energy shoreface, Southeastern Australia. J Sediment Res 54:1292–1302

    Google Scholar 

  • FitzGerald D, Montello T (1993) Back-barrier and inlet sediment response to the breaching of Nauset Spit and formation of New Inlet, Cape Cod, Massachusetts. From: coastal and estuarine studies. American Geophysical Union, Washington, DC

    Google Scholar 

  • FitzGerald D, Pendelton E (2002) Inlet formation and evolution of the sediment bypassing system: New Inlet, Cape Cod, Massachusetts. J Coast Res 36:290–299

    Google Scholar 

  • FitzGerald D, Penland S, Nummedal D (1984) Control of barrier island shape by inlet sediment bypassing: East Frisian Islands, West Germany. Mar Geol 60:355–376

    Article  Google Scholar 

  • FitzGerald D et al (2004) Morphologic and stratigraphic evolution of muddy ebb-tidal deltas along a subsiding coast: Barataria Bay, Mississippi River delta. Sedimentology 51:1157–1178

    Article  Google Scholar 

  • FitzGerald D et al (2005) Coarse-grained sediment transport in Northern New England Estuaries: a synthesis. Coast Syst Cont Margin 8:195–213

    Article  Google Scholar 

  • FitzGerald D et al (2007) Impacts of rising sea level to back-barrier Wetlands, Tidal Inlets, and Barrier Islands: Barataria Coast, Louisiana. Coast Sediment 7:1179–1192

    Article  Google Scholar 

  • FitzGerald D et al (2008) Coastal impacts due to sea-level rise. Annu Rev Earth Planet Sci 36:601–647

    Article  Google Scholar 

  • FitzGerald D, Buynevich I, Hein C (2012) Morphodynamics and facies architecture of tidal inlets and tidal deltas. In: Davis R, Dalrymple R (eds) Principles of tidal sedimentology. Springer, New York, pp 301–333

    Chapter  Google Scholar 

  • Fontolan G et al (2007) Sediment storage at tidal inlets in Northern Adriatic Lagoons: ebb-tidal delta morphodynamics, conservation and sand use strategies. Estuar Coast Shelf Sci 75:261–277

    Article  Google Scholar 

  • Frazier D (1967) Recent deltaic deposits of the Mississippi River; their development and chronology. Gulf Coast Assoc Geol Soc Trans 17:287–315

    Google Scholar 

  • French J, Spencer T (1993) Mar Geol 110:315–331

    Article  Google Scholar 

  • Friedrichs C et al (1993) Hydrodynamic modeling of a multiple-inlet estuary/barrier system: insight into tidal inlet formation and stability. In: Aubrey D, Giese G (eds) Formation and evolution of multiple tidal inlet systems. American Geophysical Institute, Washington, DC, pp 95–112

    Chapter  Google Scholar 

  • Frueergaard M et al (2015) Stratigraphy, evolution, and controls of a Holocene transgressive–regressive barrier island under changing sea level: Danish north sea coast. J Sediment Res 85:820–884

    Article  Google Scholar 

  • Georgiou I, Schindler J (2009) Wave forecasting and longshore sediment transport gradients along a transgressive barrier island: Chandeleur Islands, Louisiana. Geo-Mar Lett 29:467–476

    Article  Google Scholar 

  • Gleason M et al (1979) Effects of stem density upon sediment retention by salt marsh cord grass, Spartina alterniflora loisel. Estuar Coast 2:271–273

    Article  Google Scholar 

  • Goeldner L (1999) The German Wadden sea coast: reclamation and environmental protection. J Coast Conserv 5:23–30

    Article  Google Scholar 

  • Grinsted A, Moore J, Jevrejeva S (2013) Projected Atlantic hurricane surge thread from rising temperatures. Proc Natl Acad Sci U S A 110:5369–5373

    Article  Google Scholar 

  • Halsey S (1979) New model of barrier island development. In: Leatherman S (ed) Barrier islands: from the Gulf of St. Lawrence to the Gulf of Mexico. Academic Press, New York, pp 185–210

    Google Scholar 

  • Hapke C et al (2010a) A review of sediment budget imbalances along Fire Island, New York: can nearshore geologic framework and patterns of shoreline change explain the deficit? J Coast Res 26:510–522

    Article  Google Scholar 

  • Hapke C et al (2010b) National assessment of shoreline change: historical shoreline change along the New England and Mid-Atlantic coasts: U.S. Geological Survey Open-File Report 2010-1118, 57p

    Google Scholar 

  • Harris P (1988) Large-scale bedforms as indicators of mutually evasive sand transport and the sequential infilling of wide-mouthed estuaries. Sediment Geol 57:273–298

    Article  Google Scholar 

  • Hart W, Murray S (1978) Energy balance and wind effects in a shallow sound. J Geophys Res 83:4097–4106

    Article  Google Scholar 

  • Hayes M (1979) Barrier island morphology as a function of tidal and wave regime. In: Leatherman S (ed) Barrier islands. Academic, New York, pp 1–28

    Google Scholar 

  • Hayes M (1994) The Georgia bight barrier system. In: Davis R (ed) Geology of Holocene barrier island system. Springer, Berlin, pp 233–304

    Chapter  Google Scholar 

  • Hayes M, FitzGerald D (2013) Origin, evolution, and classification of tidal inlets, symposium in applied coastal geomorphology to honor miles O. Hayes. J Coast Res Special Issue 69:14–33

    Article  Google Scholar 

  • Hayes M, Kana T (1976a) Terrigenous clastic depositional environments: some modern example: a field course. Coastal Research Division, Department of Geology, University of South Carolina. No. 11

    Google Scholar 

  • Hayes M, Kana T (eds) (1976b) Terrigenous clastic depositional environments. Tech. Rept. No.11-CRD. Coastal Research Division. Dept. Geol., Univ. South Carolina, 306 p

    Google Scholar 

  • Hayes M, Ruby C (1994) Barriers of Pacific Alaska. In: Davis R (ed) Geology of Holocene barrier island systems. Springer, Berlin, pp 395–433

    Chapter  Google Scholar 

  • Hayes M et al (1976) Geomorphology of the Southern Coast of Alaska. Coast Eng Proc 1:15

    Google Scholar 

  • Hein C et al (2012) Refining the model of barrier island formation along a paraglacial coast in the Gulf of Maine. Mar Geol 307:40–57

    Article  Google Scholar 

  • Hein C et al (2014a) Evolution of paraglacial coasts in response to changes in fluvial sediment supply. Geol Soc Lond Spec Publ 388:247–280

    Article  Google Scholar 

  • Hein C et al (2014b) Coastal response to late-stage transgression and sea-level highstand. Geol Soc Am Bull 126:459–480

    Article  Google Scholar 

  • Hicks D, Hume T (1996) Morphology an size of ebb tidal deltas at natural inlets on open-sea and pocket-bay coasts, North Island, New Zealand. Coast Res 12:47–63

    Google Scholar 

  • Homeier H, Luck G (1969) Das historische Kartenwerk 1: 50000 der Niedersächsischen Wasserwirtschaftsverwaltung als Ergebnis historisch-topographischer Untersuchungen und Grundlage zur kausalen Deutung hydrologisch-morphologischer Gestaltungsvorgänge im Küstengebiet. Wurm

    Google Scholar 

  • Hughes Z et al (2009) Rapid headward erosion of marsh creeks in response to relative sea level rise. Geophys Res Lett 36:L03602. https://doi.org/10.1029/2008GL036000

    Article  Google Scholar 

  • Inman D, Nordstrom C (1971) On the tectonic and morphologic classification of coasts. J Geol 79:1–21

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the IPCC

    Google Scholar 

  • Jarrett J (1976) Tidal prism-inlet area relationships. GITI Rep. 3, U.S. Army Engineer Waterw. Exp. Stn., Vicksburg, MS

    Google Scholar 

  • Jevrejeva S, Moore J, Grinsted A (2012) Sea level projections to AD2500 with a new generation of climate change scenarios. Glob Planet Change 80:14–20

    Article  Google Scholar 

  • Kastler J, and Wiberg P, 1996, Sedimentation and boundary changes of Virginia salt marshes: Estuar Coast Shelf Sci, v. 42, p. 683–700, doi:https://doi.org/10.1006/ecss.1996.0044.

  • Kindinger J, Buster N, Flocks J, Bernier J, Kulp M (2013) Louisiana barrier island comprehensive monitoring (BICM) program summary report: data and analyses 2006 through 2010: U.S. Geological Survey Open-File Report 2013–1083, 86 p

    Google Scholar 

  • Kirwan M, Guntenspergen G (2010) Influence of tidal range on the stability of coastal marshland. J Geophys Res 115

    Google Scholar 

  • Kirwan M, Guntenspergen G (2012) Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J Ecol 100:764–770

    Article  Google Scholar 

  • Kirwan M, Megonigal J (2013) Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504:53–60

    Article  Google Scholar 

  • Kirwan M, Murray A (2007) A coupled geomorphic and ecological model of tidal marsh evolution. Proc Natl Acad Sci U S A 104:6118–6122

    Article  Google Scholar 

  • Kirwan M, Guntenspergen G, Morris J (2009) Latitudinal trends in Spartina alterniflora productivity and the response of coastal marshes to global change. Glob Change Biol 15:1982–1989

    Article  Google Scholar 

  • Kirwan M et al (2010) Limits on the adaptability of coastal marshes to rising sea level. Geophys Res Lett 37. https://doi.org/10.1029/2010GL045489

  • Kirwan M et al (2016) Overestimation of marsh vulnerability to sea level rise. Nat Clim Change 6:253–260

    Article  Google Scholar 

  • Knutson T et al (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163

    Article  Google Scholar 

  • Kraus NC, Larson ML, Wise RA (1998) Depth of closure in beach-fill design, Coastal Engineering Technical Note. U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS, 13p

    Google Scholar 

  • Kraus N (2000) Reservoir model of ebb-tidal shoal evolution and sand bypassing. J Waterway Port Coast Ocean Eng 126:305–313

    Article  Google Scholar 

  • Kulp M, FitzGerald D, Penland S (2005) Sand-rich lithosomes of the Holocene Mississippi River delta plain. In: Giosan L, Bhattacharya J (eds) River deltas-concepts, models, and examples, Society of Economic Mineralogists and Paleontologists Special Publication 83:277–291

    Google Scholar 

  • Langley A et al (2009) Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc Natl Acad Sci U S A 106:6182–6186

    Article  Google Scholar 

  • Leonard L, Croft A (2006) The effect of standing biomass on flow velocity and turbulence in Spartina alterniflora canopies. Estuar Coast Shelf Sci 69:325–336

    Article  Google Scholar 

  • List J et al (1994) Louisiana barrier island erosion study: atlas of seafloor changes from 1878 to 1989. Miscellaneous Investigations Series I-2150-B. US Geological Survey and Louisiana State University, Reston, VA, 81 p

    Google Scholar 

  • Liu J et al (1993) Morphodynamics evolution of a newly formed tidal inlet. In: Aubrey D, Giese G (eds) Formation and evolution of multiple tidal inlets. American Geophysical Union, Washington, DC. https://doi.org/10.1029/CE044p0062

    Google Scholar 

  • Louters T, Gerritsen F (1994) The riddle of the sands: a tidal system’s answer to a rising sea level. Public works and water management. National Institute for Coastal and Marine Management, The Hague, Netherlands

    Google Scholar 

  • Lovering J, Adams R (2009) Exploring the interplay of wave climate and terrestrial sediment supply in the geomorphic evolution of sandy coasts with a numerical model. Abstract Presented at the AGU Fall Meeting 1:644

    Google Scholar 

  • Mallinson D, Culver S, Leorri E, Mitra S, Mulligan R, Riggs S (2018) Barrier island and estuary co-evolution in response to Holocene climate and sea-level change: Pamlico Sound and the Outer Banks Barrier Islands, North Carolina, USA. In: Moore LJ, Murray AB (eds) Barrier dynamics and response to changing climate. Springer, New York

  • Marani M et al (2011) Understanding and predicting wave erosion of marsh edges. Geophys Res Lett 38

    Google Scholar 

  • Mariotti G, Carr J (2014) Dual role of slat marsh retreat: long-term loss and short-term resilience. Water Resour Res 50:2963–2974

    Article  Google Scholar 

  • Mariotti G, Fagherazzi S (2013) Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. PNAS 110:5353–5356

    Article  Google Scholar 

  • Mariotti G et al (2010) Influence of storm surges and sea level on shallow tidal basin erosive processes. J Geophys Res 115(C11). https://doi.org/10.1029/2009JC005892

  • McBride R, Penland S, Hilands M, Williams S, Westphal K, Jaffe B, Sallenger A Jr (1992) Chapter 4: Analysis of barrier shoreline change in Louisiana from 1853 to 1989. In: Williams S, Penland S, Sallenger AH (eds) Atlas of shoreline changes in Louisiana from 1853 to 1989, USGS Miscellaneous Investigations Series I-2150-A, 108 p

    Google Scholar 

  • McBride R, Fenster M, Seminack C, Richardson T, Sepanik J, Hanley J, Bundick J, Tedder E (2015) Holocene barrier-island geology and morphodynamics of the Maryland and Virginia open-ocean coasts: Fenwick, Assateague, Chincoteague, Wallops, Cedar, and Parramore Islands. Field Excursions for the GSA Annual Meeting, Baltimore, 2015: GSA Field Guide 40, pp 392–401. https://doi.org/10.1130/2015.0040(10)

  • McGee W (1890) Encroachments of the sea. The Forum 9:437–449

    Google Scholar 

  • Meade R (1969) Landward transport of bottom sediments in estuaries of the Atlantic Coastal Plain. J Sedim Petrol 39:222–234

    Google Scholar 

  • Mellett CL, Plater AJ (2018) Drowned barriers as archives of coastal-response to sea-level rise. In: Moore LJ, Murray AB (eds) Barrier dynamics and response to changing climate. Springer, New York

  • Miner M et al (2009a) Chapter D. Historical (1869-2007) sea floor evolution and sediment dynamics along the Chandeleur Islands. In: Lavoie D (ed) Sand resources, regional geology, and coastal processes of the Chandeleur Islands coastal system—an evaluation of the Breton National Wildlife Refuge. U.S. Geological Survey Scientific Investigations Report 47-74

    Google Scholar 

  • Miner M et al (2009b) Hurricane-associated ebb-tidal delta sediment dynamics. Geology 37:851–854

    Article  Google Scholar 

  • Mitrovica J, Milne G (2002) On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quat Sci Rev 21:2179–2190

    Article  Google Scholar 

  • Moore LJ, List JH, Williams SJ, Stolper D (2010) Complexities in barrier island response to sea-level rise: insights from model experiments. J Geophys Res Earth Surf. https://doi.org/10.1029/2009JF001299

  • Moore LJ, Goldstein EB, Vinent OD, Walters D, Kirwan M, Lauzon R, Murray AB, Ruggiero P (2018) The role of ecomorphodynamic feedbacks and landscape couplings in influencing the response of barriers to changing climate. In: Moore LJ, Murray AB (eds) Barrier dynamics and response to changing climate. Springer, New York

  • Morris J et al (2002) Responses of coastal wetlands to rising sea level. Ecology 83:2869–2877

    Article  Google Scholar 

  • Morton R (2003) Morphological impacts of extreme storms on sandy beaches and barriers. J Coast Res 19:560–573

    Google Scholar 

  • Morton R (2008) Historical changes in the Mississippi-Alabama barrier-island chain and the roles of extreme storms, sea level, and human activities. J Coast Res 24:1587–1600

    Article  Google Scholar 

  • Morton RA, Bernier JC, Barras JA, Ferina NF (2005) Rapid subsidence and historical wetland loss in the south-central Mississippi delta plain: likely causes and future implications. U.S. Geological Survey Open-file Report 2005–1216. http://www.pubs.usgs.gov/of/2005/1216

  • Morton R, Bernier JC, Barras JA (2006) Evidence of regional subsidence and associated interior wetland loss induced by hydrocarbon production, Gulf Coast region, USA. Environ Geol 50:261–274

    Article  Google Scholar 

  • Mota Oliveira I (1970) Natural flushing ability in tidal inlets. In: Am. Soc. Civ. Eng., Proc. 12th Coastal Eng. Conf., Washington, DC, pp 1827–1845

    Google Scholar 

  • Mudd S et al (2004) Flow, sedimentation, and biomass production on a vegetated salt marsh in South Carolina: toward a predictive model of marsh morphologic and ecologic evolution. Ecogeomorphol Tidal Marshes Coast Estuar Stud 59:165–187

    Google Scholar 

  • Mudd S, D’Alpaos A, Morris J (2010) How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. J Geophys Res 115

    Google Scholar 

  • Muller R, Stone G (2001) A climatology of tropical storm and hurricane strikes to enhance vulnerability prediction for the Southeast U.S. Coast. J Coast Res 17:949–956

    Google Scholar 

  • Murray AB, Moore LJ (2018) Geometric constraints on long-term barrier migration: from simple to surprising. In: Moore LJ, Murray AB (eds) Barrier dynamics and response to changing climate. Springer, New York

  • National Research Council (1972) Committee on the Alaska Earthquake of the Division of Earth Sciences, 1972. The Great Alaska Earthquake of 1964: oceanography and coastal engineering. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Neubauer S (2008) Contributions of mineral and organic components to tidal freshwater marsh accretion. Estuar Coast Shelf Sci 78:78–88

    Article  Google Scholar 

  • Nicholls R et al (2007) Coastal systems and low-lying areas. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry M, et al. Cambridge University Press, Cambridge, UK, pp 315–356

    Google Scholar 

  • Niedoroda A, Swift D (1981) Maintenance of the shoreface by wave orbital currents and mean floe: observations from the long island coast. Geophys Res Lett 8:337–340

    Article  Google Scholar 

  • NOAA (2015a) http://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?stnid=8761724

  • NOAA (2015b) http://www.ndbc.noaa.gov/station_history.php?station=46001

  • Nummedal D, Stephen M (1976) Coastal dynamics and sediment transportation, Northeast Gulf of Alaska. Geology 12

    Google Scholar 

  • Nyman JA, Carloss M, DeLaune RD, Patrick WH Jr (1994) Erosion rather than plant dieback as the mechanism of marsh loss in an estuarine marsh. Earth Surf Process Landf 19:69–84

    Article  Google Scholar 

  • O’Brien M (1931) Estuary tidal prisms related to entrance areas. Civil Eng 1:738–739

    Google Scholar 

  • Odezulu CI, Lorenzo-Trueba J, Wallace DJ, Anderson JB (2018) Follets Island: a case of unprecedented change and transition from rollover to subaqueous shoals. In: Moore LJ, Murray AB (eds) Barrier dynamics and response to changing climate. Springer, New York

  • Oertel G, Kraft J (1994) New Jersey and Delmarva barrier islands. In: Davis R (ed) Geology of Holocene barrier island systems. Springer, Berlin, pp 207–232

    Chapter  Google Scholar 

  • Ortiz AC, Roy S, Edmonds DA (2017) Land loss by pond expansion on the Mississippi River Delta Plain. Geophys Res Lett 44:3635–3642. https://doi.org/10.1002/2017GL073079

    Article  Google Scholar 

  • Palmer M et al (2004) Observations of particle capture on a cylindrical collector: implications for particle accumulation and removal in aquatic systems. Limnol Oceanogr 49:76–85

    Article  Google Scholar 

  • Penland S, Boyd R, Suter J (1988) Transgressive depositional systems of the Mississippi Delta Plain: a model for barrier shoreline and shelf sand development. J Sediment Petrol 58:932–949

    Google Scholar 

  • Penland S et al (1989) Holocene sand shoals offshore of the Mississippi River Delta plain. Gulf Coast Assoc Geol Soc Trans 39:471–480

    Google Scholar 

  • Penland S, Ramsey KE (1990) Relative sea-level rise in Louisiana and the Gulf of Mexico. J Coast Res 2:323–342

    Google Scholar 

  • Plafker G (1969) Tectonics of the March 27, 1964 Alaska Earthquake. U.S. Geological Survey Professional Paper 543:74

    Google Scholar 

  • Priestas AM, Mariotti G, Leonardi N, Fagherazzi S (2015) Coupled wave energy and erosion dynamics along a salt marsh boundary, Hog Island Bay, Virginia, USA. J Mar Sci Eng 3:1041–1065. https://doi.org/10.3390/jmse3031041

    Article  Google Scholar 

  • Proosdij V, Davidson-Arnott R, Ollerhead J (2006) Controls on spatial patterns of sediment deposition across a macro-tidal salt marsh surface over single tidal cycles. Estuar Coast Shelf Sci 69:64–86

    Article  Google Scholar 

  • Redfield A, Rubin M (1962) Age of salt marsh peat in relation to recent changes in sea level. Science 136:328

    Article  Google Scholar 

  • Reimnitz E (1966) Late Quaternary history and sedimentation of the Copper River Delta and Vicinity, Alaska. Thesis, Scripps Institute of Oceanography, La Jolla, California. Unpublished

    Google Scholar 

  • Reimnitz E, Marshall N (1965) Effects of the Alaska Earthquake and Tsunami on recent deltaic sediments. J Geophys Res 70:2363–2376

    Article  Google Scholar 

  • Rice T, Niedoroda A, Pratt A (1976) The coastal processes and geology: Virginia Barrier Islands. Virginia coast reserve study: ecosystem description 117–388

    Google Scholar 

  • Richards (1934) The salt marshes of the Dovey Estuary. Ann Bot 1:225–259

    Article  Google Scholar 

  • Richardson T (2012) Morphodynamic changes of the Parramore-Cedar barrier island system and Wachapreague Inlet, Virginia from 1852 to 2011: a model of barrier island and tidal inlet evolution along the southern Delmarva Peninsula, USA. Ph.D. thesis. Fairfax, George Mason University, 306 p

    Google Scholar 

  • Rieu R, van Heteren S, Van Der Spek AJ, De Boer PL (2005) Development and preservation of a mid-Holocene tidal-channel network offshore the Western Netherlands. J Sediment Geol 75:409–419

    Article  Google Scholar 

  • Roberts H (1997) Dynamic changes of the Holocene Mississippi river delta plain: the delta cycle. J Coast Res 13:605–637

    Google Scholar 

  • Rodriguez AB, Yu W, Theuerkauf EJ (2018) Abrupt increase in washover deposition along a transgressive barrier island during the late nineteenth century acceleration in sea-level rise. In: Moore LJ, Murray AB (eds) Barrier dynamics and response to changing climate. Springer, New York

  • Roos PC, Schuttelaars HM, Brouwer RL (2013) Observations of barrier island length explained using an exploratory morphodynamic model. Geophys Res Lett 40:4338–4343. https://doi.org/10.1002/grl.50843

    Article  Google Scholar 

  • Rosati J, Ebersole B (1996) Littoral impact of Ocean City Inlet, Maryland, USA. Coast Eng Proc 1:25

    Google Scholar 

  • Rosati J, Dean R, Stone G (2010) A cross-shore model of barrier island migration over a compressible substrate. Mar Geol 271:1–16

    Article  Google Scholar 

  • Rosati J, Dean R, Walton T (2013) The modified Brunn rule extended for landward transport. Mar Geol 340:71–81

    Article  Google Scholar 

  • Sallenger A, Wright C, Howd P, Doran K, Guy K (2009) Extreme coastal changes on the Chandeleur Islands, Louisiana, during and after Hurricane Katrina. In: Lavoie D (ed) Sand resources, regional geology, and coastal processes of the Chandeleur islands coastal system: an evaluation of the Breton National Wildlife Refuge. U.S. Geological Survey, Denver, CO, pp 27–36

    Google Scholar 

  • Schwab W et al (2013) Geologic evidence for onshore sediment transport from the inner continental shelf: Fire Island, New York. J Coast Res 29:526–544

    Article  Google Scholar 

  • Schwimmer R (2001) Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, U.S.A. J Coast Res 17:672–683

    Google Scholar 

  • Silliman B et al (2012) Degradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizons oil spill. Proc Natl Acad Sci U S A 109:11234–11239

    Article  Google Scholar 

  • Silvestri S, Defina A, Marani M (2005) Tidal regime, salinity and salt marsh plant zonation. Estuar Coast Shelf Sci 62:119–130

    Article  Google Scholar 

  • Smith J, FitzGerald D (1994) Sediment transport patterns at the Essex River Inlet Ebb-Tidal Delta, Massachusetts, U.S.A. J Coast Res 10:752–774

    Google Scholar 

  • Snedden J, Nummedal D, Amos A (1988) Storm- and fair-weather combined flow on the Central Texas continental shelf. J Sediment Res 58:580–595

    Google Scholar 

  • Stauble D (1997) Ocean City, Maryland and Vicinity water resources study. Draft integrated feasibility report and environmental impact statement. US Army Engineer District, Baltimore, Baltimore, MD

    Google Scholar 

  • Stauble D (2001) Morphodynamic evaluation of a highly dynamic inlet to improve channel navigation: Chatham Harbor Massachusetts, USA. Coast Dyn 1:232–241

    Article  Google Scholar 

  • Stauble D et al (1993) Beach nourishment response and design evaluation: Ocean City, Maryland. Coastal Engineering Research Center, Vicksburg, MS

    Google Scholar 

  • Stefanon L et al (2012) Signatures of sea level changes on tidal geomorphology: experiments on network incision and retreat. Geophys Res Lett 39

    Google Scholar 

  • Stevenson J, Kearney M, Pendleton E (1985) Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Mar Geol 67:213–235

    Article  Google Scholar 

  • Stive M et al (2009) Empirical relationships between tidal inlet cross sections and tidal prism: a review. In: Mizuguchi M (ed) Proceedings of the conference on coastal dynamics, Tokyo, Japan 1:1–10

    Google Scholar 

  • Stoddart R, Reed D, French J (1989) Understanding salt-marsh accretion, Scolt Head Island, Norfolk, England. Estuar Coast 12:228–236

    Article  Google Scholar 

  • Stolper D, List JH, Thieler ER (2005) Simulating the evolution of coastal morphology and stratigraphy with a new morphological-behavior model (GEOMBEST). Mar Geol 218:17–36

    Article  Google Scholar 

  • Stone GW, Sheremet A, Zhang X, Braud D (2003) Coastal landloss and wave-surge predictions during hurricanes in Coastal Louisiana: implications for the oil and gas industry. Report prepared for Louisiana Department of Natural Resources, Minerals Management Service, and U.S. Geological Survey, 61p

    Google Scholar 

  • Stone, G. and Orford, J. 2004, Storms and their significance in coastal morphosedimentary dynamics: Marine Geology, v. 210, nos. 1–4, p. 1–362.

    Google Scholar 

  • Stumpf R (1983) The process of sedimentation on the surface of a salt marsh. Estuar Coast Shelf Sci 17:495–508

    Article  Google Scholar 

  • Temmerman S et al (2003) Modeling long-term tidal marsh growth under changing tidal conditions and suspended sediment concentrations, Scheldt estuary, Belgium. Mar Geol 193:151–169

    Article  Google Scholar 

  • Temmerman S et al (2007) Vegetation causes channel erosion in a tidal landscape. Geology 35:631–634

    Article  Google Scholar 

  • Torio D, Chmura GL (2015) Impact of sea level rise on tidal marsh as fish habitat. Estuar Coasts 38:1288–1303

    Article  Google Scholar 

  • Törnqvist T et al (2008) Mississippi delta subsidence primarily caused by compaction of Holocene strata. Nat Geosci 1:173–176

    Article  Google Scholar 

  • Trosclair KJ (2013) Wave transformation at a saltmarsh edge and resulting marsh edge erosion: observations and modeling. Department of Earth and Environmental Science, University of New Orleans Theses and Dissertations, 134 p

    Google Scholar 

  • Tran T et al (2012) Cross-sectional stability of tidal inlets: a comparison between numerical and empirical approaches. Coast Eng 60:21–29

    Article  Google Scholar 

  • Underwood S, Hiland M (1995) Historical development of Ocean City Inlet ebb shoal and its effect on Northern Assateague Island. U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center, Vicksburg, MS. 128p

    Google Scholar 

  • U.S. Army Corps of Engineers (1998) Ocean City, Maryland, and vicinity water resources study final integrated feasibility report and environmental impact statement, Appendix D, Restoration of Assateague Island, Baltimore, Maryland

    Google Scholar 

  • Van der Koppel J et al (2005) Self-organization and vegetation collapse in salt marsh ecosystems. Am Nat 165

    Google Scholar 

  • van der Wegen M (2013) Numerical modeling of the impact of sea level rise on tidal basin morphodynamics. J Geophys Res Earth Surf 118:447–460. https://doi.org/10.1002/jgrf.20034

    Article  Google Scholar 

  • Van Goor M et al (2003) Impact of sea-level rise on the morphological equilibrium state of tidal inlets. Mar Geol 202:211–227

    Article  Google Scholar 

  • van Heteren S, van de Plassche O (1997) Influence of relative sea-level change and tidal-inlet development on barrier-spit stratigraphy, Sandy Neck, MA. J Sediment Res 67:350–363

    Google Scholar 

  • Van Proosdij D et al (2005) Monitoring seasonal changes in surface elevation of intertidal environments near the Windsor Causeway. Final report prepared for the Nova Scotia Department of Transportation

    Google Scholar 

  • Walters D et al (2014) Interactions between barrier islands and back-barrier marshes affect island system response to sea level rise: Insights from a coupled model. J Geophys Res Earth Surf 119:2013–2031. https://doi.org/10.1002/2014jf003091

    Google Scholar 

  • Walton T, Adams W (1976) Capacity of inlet outer ears to store sand. In: Proceedings of the 15th conference on coastal engineering, Honolulu, Hawaii

    Google Scholar 

  • Whittaker R (ed) (1975) Communities and ecosystems, 2nd edn. Macmillan, New York

    Google Scholar 

  • Williams J (1992) USGS Research Contributes to Assateague Island Restoration—Mitigating 70 Years of Coastal Erosion Due to Ocean City Inlet Jetties, Sound Waves, USGS Pub. U. S. Department of the Interior

    Google Scholar 

  • Wilson CA, Allison MA (2008) An equilibrium profile model for retreating marsh shorelines in southeast Louisiana. Estuar Coast Shelf Sci 80(4):483–494

    Article  Google Scholar 

  • Wilson CA et al (2013) Marsh pool and tidal creek morphodynamics: dynamic equilibrium of northern saltmarshes? Geomorphology 213:99–115

    Article  Google Scholar 

  • Wolinsky MA, Murray AB (2009) A unifying framework for shoreline migration: 2. Application to wave-dominated coasts. J Geophys Res 114:F01009. https://doi.org/10.1029/2007JF000856

    Google Scholar 

  • Wright S (2012) Understanding the mechanisms behind surface elevation loss in ditched marshes. Master’s Thesis, Department of Earth Sciences, Boston University, Boston, 125 p

    Google Scholar 

  • Yu S, Törnqvist T, Hu P (2012) Quantifying Holocene lithospheric subsidence rates underneath the Mississippi. Earth Planet Sci Lett 331:21–30

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the many graduate students whose research helped develop the ideas presented in this chapter. The paper has been substantively improved with suggestions and editorial comments by Andrew Ashton, Laura Moore, Brad Murray, and one anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan M. FitzGerald B.A., M.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

FitzGerald, D.M., J. Hein, C., Hughes, Z., Kulp, M., Georgiou, I., Miner, M. (2018). Runaway Barrier Island Transgression Concept: Global Case Studies. In: Moore, L., Murray, A. (eds) Barrier Dynamics and Response to Changing Climate. Springer, Cham. https://doi.org/10.1007/978-3-319-68086-6_1

Download citation

Publish with us

Policies and ethics