Skip to main content

Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma

  • Chapter
  • First Online:

Part of the book series: Molecular Pathology Library ((MPLB))

Abstract

Characterized by poor prognosis, high mortality, and frequent relapse, hepatocellular carcinoma (HCC) is one of the deadliest cancers. People with HCC frequently present with advanced disease. There is a paucity of treatment options for patients once they have reached this stage. Apart from sorafenib, a tyrosine kinase inhibitor which extends survival of HCC patients by only a few months, there is currently no other effective treatment for advanced HCC. Epithelial-to-mesenchymal transition (EMT) plays an important role in HCC development and progression. Consequently, EMT markers may have applications in the diagnosis and treatment of HCC. And data from preclinical and clinical trials suggest that there may be potential for success in harnessing EMT markers for the diagnosis of HCC, and specific targeting of EMT markers may have potential usefulness for the treatment of advanced HCC.

This is a preview of subscription content, log in via an institution.

References

  1. Raza A, et al. Hepatocellular carcinoma review: current treatment, and evidence-based medicine. World J Gastroenterol. 2014;20(15):4115–27. https://doi.org/10.3748/wjg.v20.i15.4115.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schütte K, Balbisi F, Malfertheiner P. Prevention of hepatocellular carcinoma. Gastrointest Tumors. 2016;3(1):37–43. https://doi.org/10.1159/000446680.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Villanueva A, Hernandez-Gea V, Llovet J. Medical therapies for hepatocellular carcinoma: a critical view of the evidence. Nat Rev Gastroenterol Hepatol. 2013;10:34–42. https://doi.org/10.1038/nrgastro.2012.199.

    Article  CAS  PubMed  Google Scholar 

  4. Colagrande S, Inghilesi AL, Aburas S, Taliani GG, Nardi C, Marra F. Challenges of advanced hepatocellular carcinoma. World J Gastroenterol. 2016;22(34):7645–59. https://doi.org/10.3748/wjg.v22.i34.7645.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Di Marco V, De Vita F, Koskinas J, Semela D, Toniutto P, Verslype C. Sorafenib: from literature to clinical practice. Ann Oncol. 2013;24(Suppl 2):ii30–7. https://doi.org/10.1093/annonc/mdt055.

    Article  PubMed  Google Scholar 

  6. American Cancer Society. Cancer facts & figures 2016. Atlanta: American Cancer Society; 2016.

    Google Scholar 

  7. Acloque H, et al. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J Clin Invest. 2009;119(6):1438–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalluri R. When epithelial cells decide to become mesenchymal-like cells. J Clin Invest. 2009;119(6):1417–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martin-Belmonte F, Perez-Moreno M. Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer. 2012;12:23–8.

    CAS  Google Scholar 

  10. Krakhmal N, Zavyalova M, et al. Cancer invasion: patterns and mechanisms. Acta Nat. 2015;7(2):17–28.

    CAS  Google Scholar 

  11. Nakaya Y, Sheng G. Epithelial to mesenchymal transition during gastrulation: an embryological view. Develop Growth Differ. 2008;50(9):755–66.

    Article  CAS  Google Scholar 

  12. Kerosuo L, Bronner-Fraser M. What is bad in cancer is good in the embryo: importance of EMT in neural crest development. Semin Cell Dev Biol. 2012;23(3):320–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Risky DC. Epithelial-mesenchymal transition. J Cell Sci. 2005;118(19):4325–6. https://doi.org/10.1242/jcs.02552.

    Article  CAS  Google Scholar 

  14. Stone RC, Pastar I, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res. 2016;365(3):495–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inman JL, Robertson C, et al. Mammary gland development: cell fate specification, stem cells, and the microenvironment. Development. 2015;142:1028–42.

    Article  CAS  PubMed  Google Scholar 

  16. Guislaine B, et al. Epithelial mesenchymal transition: a double-edged sword. Clin Transl Med. 2015;4:14.

    Article  Google Scholar 

  17. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119(6):1420–8. https://doi.org/10.1172/JCI39104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009;119(1558–8238 (Electronic)):1429–37. https://doi.org/10.1172/JCI36183.protected.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yao D, Dai C, Peng S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res. 2011;9(12):1608–20.

    Article  CAS  PubMed  Google Scholar 

  20. Lamouille S. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–96. https://doi.org/10.1038/nrm3758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sabbah M, Emami S, Redeuilh G, Julien S, Prévost G, Zimber A, et al. Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat. 2008;11(4–5):123–51. https://doi.org/10.1016/j.drup.2008.07.001.

    Article  CAS  PubMed  Google Scholar 

  22. Jeanes A, Gottardi CJ, Yap AS. Cadherins and cancer: how does cadherin dysfunction promote tumor progression? Oncogene. 2008;27(55):6920–9. https://doi.org/10.1038/onc.2008.343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jankowski JA, Bruton R, Shepherd N, Sanders DS. Cadherin and catenin biology represent a global mechanism for epithelial cancer progression. Mol Pathol. 1997;50(6):289–90. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=379661&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pirinen RT, Hirvikoski P, Johansson RT, Hollmén S, Kosma VM. Reduced expression of alpha-catenin, beta-catenin, and gamma-catenin is associated with high cell proliferative activity and poor differentiation in non-small cell lung cancer. J Clin Pathol. 2001;54(5):391–5. https://doi.org/10.1136/jcp.54.5.391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cho SB. Expression of E- and N-cadherin and clinicopathology in hepatocellular carcinoma. Pathol Int. 2008;58(10):635–42. https://doi.org/10.1111/j.1440-1827.2008.02282.x.

    Article  PubMed  Google Scholar 

  26. Hashiguchi M, Ueno S, Sakoda M, Iino S, Hiwatashi K, Minami K, et al. Clinical implication of ZEB-1 and E-cadherin expression in hepatocellular carcinoma (HCC). BMC Cancer. 2013;13:572. https://doi.org/10.1186/1471-2407-13-572.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Matsumura T, Makino R, Mitamura K. Frequent down-regulation of E-cadherin by genetic and epigenetic changes in the malignant progression of HCC. Clin Cancer Res. 2001;7:594–9.

    CAS  PubMed  Google Scholar 

  28. Wang XQ, Zhang W, Lui ELH, Zhu Y, Lu P, Yu X, et al. Notch1-Snail1-E-cadherin pathway in metastatic hepatocellular carcinoma. Int J Cancer. 2012;131(3):163–72. https://doi.org/10.1002/ijc.27336.

    Article  CAS  Google Scholar 

  29. Wei Y, Van Nhieu JT, Prigent S, Srivatanakul P, Tiollais P, Buendia M-A. Altered expression of E-cadherin in hepatocellular carcinoma: correlations with genetic alterations, beta-catenin expression, and clinical features. Hepatology. 2002;36(3):692–701. https://doi.org/10.1053/jhep.2002.35342.

    Article  CAS  PubMed  Google Scholar 

  30. Yi K, Kim H, Sim J, Chan Y. Clinicopathologic correlations of E-cadherin and Prrx-1 expression loss in hepatocellular carcinoma. J Pathol Transl Med. 2016;50(5):327–36.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Petrova Y, et al. Roles for E-cadherin cell surface regulation in cancer. Mol Biol Cell. 2016;27(21):3233–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Abou Khouzam R, et al. Digital PCR identifies changes in CDH1 (E-Cadherin) transcription pattern in intestinal-type gastric cancer. Oncotarget. 2017;8(12):18811–20. 10.18632/oncotarget.13401.

    PubMed  Google Scholar 

  33. Cheung SY, et al. Role of epithelial-mesenchymal transition markers in triple negative breast cancer. Breast Cancer Res Treat. 2015;152(3):489–98.

    Article  CAS  PubMed  Google Scholar 

  34. Margineanu E, et al. Correlation between E-cadherin abnormal expressions in different types of cancer and the process of metastasis. Rev Med Chir Soc Med Nat Iasi. 2008;112(2):432–6.

    PubMed  Google Scholar 

  35. Cavaliaro U, et al. Cadherins and the tumour progression: is it all in a switch? Cancer Lett. 2002;176(2):123–8.

    Article  Google Scholar 

  36. Derycke LD, Bracke ME. N-Cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion, and signaling. Int J Dev Biol. 2004;48(5–6):463–76.

    Article  CAS  PubMed  Google Scholar 

  37. Gwak GY, Yoon JH, Yu SJ, Park SC, Jang JJ, Lee KB, et al. Anti-apoptotic N-cadherin signaling and its prognostic implication in human hepatocellular carcinomas. Oncol Rep. 2006;15(5):1117–23.

    CAS  PubMed  Google Scholar 

  38. Bernal SD, Stahel RA. Cytoskeleton-associated proteins: their role as cellular integrators in the neoplastic process. Crit Rev Oncol Hematol. 1985;3(3):191–204.

    Article  CAS  PubMed  Google Scholar 

  39. Dey P, Togra J, Mitra S. Intermediate filament: structure, function, and applications in cytology. Diagn Cytopathol. 2014;42(7):628–35.

    Article  PubMed  Google Scholar 

  40. Hu L, Lau SH, Tzang C-H, Wen J-M, Wang W, Xie D, et al. Association of Vimentin overexpression and hepatocellular carcinoma metastasis. Oncogene. 2004;23(1):298–302. https://doi.org/10.1038/sj.onc.1206483.

    Article  CAS  PubMed  Google Scholar 

  41. Okushin H, et al. Immunohistochemical study of fibronectin, lysozyme, and alpha fetoprotein (AFP) in human hepatocellular carcinoma. Gastroenterol Jpn. 1987;22(1):44–54.

    Google Scholar 

  42. Matsui S, Takahashi T, Oyanagi Y, Takahashi S, Boku S, Takahashi K, et al. Expression, localization and alternative splicing pattern of fibronectin messenger RNA in fibrotic human liver and hepatocellular carcinoma. J Hepatol. 1997;27(5):843–53. https://doi.org/10.1016/S0168-8278(97)80322-4.

    Article  CAS  PubMed  Google Scholar 

  43. Das D, Naidoo M, Ilboudo A, et al. miR-1207-3p regulates the androgen receptor in prostate cancer via FNDC1/fibronectin. Exp Cell Res. 2016;348(2):190–200. https://doi.org/10.1016/j.yexcr.2016.09.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Endo K, Terada T. Protein expression of CD44 (standard and variant isoforms) in hepatocellular carcinoma: relationships with tumor grade, clinicopathologic parameters, p53 expression, and patient survival. J Hepatol. 2000;32(1):78–84.

    Article  CAS  PubMed  Google Scholar 

  45. Xie Z, et al. Inhibition of CD44 expression in hepatocellular carcinoma cells enhances apoptosis, chemosensitivity, and reduces tumorigenesis and invasion. Cancer Chemother Pharmacol. 2008;62(6):949–57.

    Article  CAS  PubMed  Google Scholar 

  46. Wu Y, et al. Targeting integrins in hepatocellular carcinoma. Expert Opin Ther Targets. 2011;15(4):421–37.

    Article  CAS  PubMed  Google Scholar 

  47. Diaz VM, Viñas-Castells R, Garcia de Herreros A. Regulation of the protein stability of EMT transcription factors. Cell Adh Migr. 2014;8(4):418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peinado H, Olmeda D, Cano A. Snail, Zeb, and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415–28.

    Article  CAS  PubMed  Google Scholar 

  49. Becker KF, et al. Analysis of the E-cadherin repressor Snail in primary human cancers. Cells Tissues Organs. 2007;185(1–3):204–12.

    Article  CAS  PubMed  Google Scholar 

  50. Alves CC, et al. Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci (Landmark Ed). 2009;14:3035–50.

    Article  Google Scholar 

  51. Cano A, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2(2):76–83.

    Article  CAS  PubMed  Google Scholar 

  52. Castro Alves C, et al. Slug is overexpressed in gastric carcinomas and may act synergistically with SIP1 and Snail in the downregulation of E-cadherin. J Pathol. 2007;211(5):507–15.

    Article  CAS  PubMed  Google Scholar 

  53. Ikenouchi J, et al. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occluding by Snail. J Cell Sci. 2003;116(Pt 10):1959–67.

    Article  CAS  PubMed  Google Scholar 

  54. Sugimachi K, Tanaka S, Kameyama T, Taguchi K, Aishima S, Shimada M, et al. Transcriptional repressor snail and progression of human hepatocellular carcinoma. Clin Cancer Res. 2003;9(7):2657–64. http://www.ncbi.nlm.nih.gov/pubmed/12855644

    CAS  PubMed  Google Scholar 

  55. Samatov TR, Tonevitsky AG, Schumacher U. Epithelial-mesenchymal transition: focus on metastatic cascade, alternative splicing, non-coding RNAs and modulating compounds. Mol Cancer. 2013;12(1):107. https://doi.org/10.1186/1476-4598-12-107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Voulgari A, Pintzas A. Epithelial-mesenchymal transition in cancer metastasis: mechanisms, markers and strategies to overcome drug resistance in the clinic. Biochim Biophys Acta. 2009;1796(2):75–90. https://doi.org/10.1016/j.bbcan.2009.03.002.

  57. Zhang P, Hu P, Shen H, Yu J, Liu Q, Du J. Prognostic role of twist or snail in various carcinomas: a systematic review and meta-analysis. Eur J Clin Invest. 2014;44(11):1072–94. https://doi.org/10.1111/eci.12343.

    Article  PubMed  Google Scholar 

  58. Yang MH, Chen CL, Chau GY, Chiou SH, Su CW, Chou TY, et al. Comprehensive analysis of the independent effect of twist and snail in promoting metastasis of hepatocellular carcinoma. Hepatology. 2009;50(5):1464–74. https://doi.org/10.1002/hep.23221.

    Article  CAS  PubMed  Google Scholar 

  59. Lee TK, Poon RTP, Yuen AP, Ling MT, Kwok WK, Wang XH, et al. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res. 2006;12(18):5369–76. https://doi.org/10.1158/1078-0432.CCR-05-2722.

    Article  CAS  PubMed  Google Scholar 

  60. Giannelli G, et al. Transforming Growth-B as a therapeutic target in hepatocellular carcinoma. Cancer Res. 2014;74(7):1890–4. https://doi.org/10.1158/0008-5472.CAN-14-0243.

    Article  CAS  PubMed  Google Scholar 

  61. Massagué J. TGFβ in cancer. Cell. 2008;134(2):215–30. https://doi.org/10.1016/j.cell.2008.07.001.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Morrison CD, Parvani JG, Schiemann WP. The relevance of the TGFβ paradox to EMT-MET programs. Cancer Lett. 2013;341(1):30–40. https://doi.org/10.1016/j.canlet.2013.02.048.

    Article  CAS  PubMed  Google Scholar 

  63. Papageorgis P. TGF-beta signaling in tumor initiation, epithelial-to-mesenchymal transition, and metastasis. J Oncol. 2015;2015. doi:https://doi.org/10.1155/2015/587193.

  64. Zhang Y. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19(1):128–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Giehl K, Imamichi Y, Menke A. Smad4-indeendent TGF-beta signaling in tumor cell migration. Cells Tissues Organs. 2007;185(1–3):123–30.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang L, et al. Signaling interplay between transforming growth factor-B receptor and PI3K/AKT pathways in cancer. Trends Biochem Sci. 2013;38(12):612–20.

    Article  PubMed  CAS  Google Scholar 

  67. Gui T, et al. The roles of mitogen-activated protein kinase pathways in TGF-β-induced epithelial-mesenchymal transition. J Signal Transduct. 2012;2012:289243.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Paul M, Mukhopadhyay A. Tyrosine kinase—role and significance in cancer. Int J Med Sci. 2004;1(2):101–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cross M, Dexter TM. Growth factors in development, transformation, and tumorigenesis. Cell. 1991;64(2):271–80.

    Article  CAS  PubMed  Google Scholar 

  70. Witsch E, et al. Roles for growth factors in cancer progression. Physiology. 2010;25(2):85–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68–75.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev. 2008;22:2454–72.

    Article  CAS  PubMed  Google Scholar 

  73. Wang Z, et al. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets. 2010;11(6):745–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fransvea E, et al. Blocking transforming growth factor-beta up-regulates E-cadherin and reduces migration and invasion of hepatocellular carcinoma cells. Hepatology. 2008;47:1557–66.

    Article  CAS  PubMed  Google Scholar 

  75. Fransvea E, et al. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta 1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology. 2009;49:839–50.

    Article  CAS  PubMed  Google Scholar 

  76. Reichl P, et al. TGF-β in epithelial to mesenchymal transition and metastasis of liver carcinoma. Curr Pharm Des. 2012;18(27):4135–47.

    Article  CAS  PubMed  Google Scholar 

  77. Dituri F, et al. Differential Inhibition of TGF-beta signaling pathway in HCC cells using the small molecule inhibitor LY2157299 and the D10 monoclonal antibody against TGF-beta receptor type II. PLoS One. 2013;8:e67109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Steinway SN, et al. Network modeling of TGFB signaling in hepatocellular carcinoma epithelial-to-mesenchymal transition reveals joint sonic hedgehog and Wnt pathway activation. Cancer Res. 2014;74(21):5963–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Qin G, et al. Reciprocal activation between MMP-8 and TGF-b1 stimulates EMT and malignant progression of hepatocellular carcinoma. Cancer Lett. 2016;374:85–95.

    Article  CAS  PubMed  Google Scholar 

  80. Nagai T, Arao T, Furuta K, Sakai K, Kudo K, Kaneda H, et al. Sorafenib inhibits the hepatocyte growth factor-mediated epithelial mesenchymal transition in hepatocellular carcinoma. Mol Cancer Ther. 2011;10(1):169–77. https://doi.org/10.1158/1535-7163.MCT-10-0544.

    Article  CAS  PubMed  Google Scholar 

  81. Ogunwobi O, Liu C. Hepatocyte growth factor upregulation promotes carcinogenesis and epithelial-mesenchymal transition in hepatocellular carcinoma via Akt and COX-2 pathways. Clin Exp Metastasis. 2011;28(8):721–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ogunwobi O, et al. Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PLoS One. 2013;8(5):e63765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang H, et al. Activation of phosphatidylinositol 3-kinase/Akt signaling mediates sorafenib-induced invasion and metastasis in hepatocellular carcinoma. Oncol Rep. 2014;32:1465–72. https://doi.org/10.3892/or.2014.3352.

    Article  CAS  PubMed  Google Scholar 

  84. Zhang PF, et al. Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis. 2016;7:e2201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Q, et al. Wnt/B-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1a signaling. Carcinogenesis. 2013;34(5):962–73.

    Article  PubMed  CAS  Google Scholar 

  86. Yang M, et al. A double-negative feedback loop between Wnt-B-catenin signaling and HNF4a regulates epithelial-mesenchymal transition in hepatocellular carcinoma. J Cell Sci. 2013;126:5692–703.

    Article  CAS  PubMed  Google Scholar 

  87. Jiang L, et al. CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma. Oncotarget. 2014;5(17):7663–76.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wan X, et al. CD24 promotes HCC progression via triggering Notch-related EMT and modulation of tumor microenvironment. Tumor Biol. 2016;37(5):6073–84.

    Article  CAS  Google Scholar 

  89. Jia M, et al. LincRNA-p21 inhibits invasion and metastasis of hepatocellular carcinoma through Notch signaling-induced epithelial-mesenchymal transition. Hepatol Res. 2016;46(11):1137–44.

    Article  CAS  PubMed  Google Scholar 

  90. Xiao S, et al. Actin-like 6A predicts poor prognosis of hepatocellular carcinoma and promotes metastasis and epithelial-mesenchymal transition. Hepatology. 2016;63(4):1256–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vaupel P, Mayer A. Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev. 2007;26(2):225–39.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang L, et al. Hypoxia induces epithelial-mesenchymal transition via activation of SNAI1 by hypoxia-inducible factor-1a in hepatocellular carcinoma. BMC Cancer. 2013;13:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lu H, et al. Inflammation, a key event in cancer development. Mol Cancer Res. 2006;4(4):221–33.

    Article  PubMed  CAS  Google Scholar 

  94. Kubo N, et al. Cancer-associated fibroblasts in hepatocellular carcinoma. World J Gastroenterol. 2016;22(30):6841–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sullivan NJ, et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene. 2009;28:2940–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jou J, Diehl AM. Epithelial-mesenchymal transitions and hepatocarcinogenesis. J Clin Invest. 2010;120(4):1031–4. https://doi.org/10.1172/JCI42615.detection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Smith HA, Kang Y. The metastasis-promoting roles of tumor-associated immune cells. J Mol Med. 2013;91(4):411–29. https://doi.org/10.1007/s00109-013-1021-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Giordano S, Columbano A. MicroRNAs: new tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology. 2013;57(2):840–7. https://doi.org/10.1002/hep.26095.

    Article  CAS  PubMed  Google Scholar 

  99. Callegari E, Elamin BK, Sabbioni S, Gramantieri L, Negrini M. Role of microRNAs in hepatocellular carcinoma: a clinical perspective. Onco Targets Ther. 2013;6:1167–78. https://doi.org/10.2147/OTT.S36161.

    PubMed  PubMed Central  Google Scholar 

  100. Qin Z, He W, Tang J, Ye Q, Dang W, Lu Y, Ma J. MicroRNAs provide feedback regulation of epithelial-mesenchymal transition induced by growth factors. J Cell Physiol. 2016;231(1):120–9. https://doi.org/10.1002/jcp.25060.

    Article  CAS  PubMed  Google Scholar 

  101. Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev. 2013;27:2192–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ferrara N. From local invasion to metastatic cancer. Anticancer Res. 2009;29. doi:https://doi.org/10.1007/978-1-60327-087-8.

  103. Gavert N, Ben-Ze’ev A. Epithelial–mesenchymal transition and the invasive potential of tumors. Trends Mol Med. 2008;14(5):199–209. https://doi.org/10.1016/j.molmed.2008.03.004.

    Article  CAS  PubMed  Google Scholar 

  104. Heerboth S, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4(1):6. https://doi.org/10.1186/s40169-015-0048-3.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Drake JM, Strohbehn G, Bair TB, Moreland JG, Henry MD. ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells. Mol Biol Cell. 2009;20:2207–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ota I, Li XY, Hu Y, Weiss SJ. Induction of a MT1-MMP and MT2-MMP-dependent basement membrane transmigration program in cancer cells by Snail1. Proc Natl Acad Sci. 2009;106:20318–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yap TA, et al. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res. 2014;20(10):2553–68.

    Article  CAS  PubMed  Google Scholar 

  108. Li Y, et al. Epithelial–mesenchymal transition markers expressed in circulating tumor cells in hepatocellular carcinoma patients with different stages of disease. Cell Death Dis. 2013;4(10):e831. https://doi.org/10.1038/cddis.2013.347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu H, Zhang X, Li J, Sun B, Qian H, Yin Z. The biological and clinical importance of epithelial-mesenchymal transition in circulating tumor cells. J Cancer Res Clin Oncol. 2015;141(2):189–201. https://doi.org/10.1007/s00432-014-1752-x.

    Article  CAS  PubMed  Google Scholar 

  110. Satelli A, et al. Epithelial-mesenchymal transitioned circulating tumor cells capture for detecting tumor progression. Clin Cancer Res. 2014;21(4):899–906. https://doi.org/10.1158/1078-0432.CCR-14-0894.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Huaman J, et al. Circulating tumor cells from a syngeneic mouse model of hepatocellular carcinoma demonstrate epithelial-mesenchymal transition, decreased MHCI expression and increased CCR7 expression; Abstract #1547; American Association for Cancer Research, April 16–20. 2016.

    Google Scholar 

  112. Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S, Klemke R. Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci. 2010;123:2332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Shibue T, Brooks MW, Inan MF, Reinhardt F, Weinberg RA. The outgrowth of micrometastases is enabled by the formation of filopodium-like protrusions. Cancer Discov. 2012;2:706–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu M, Bardia A, Wittner BS, Stott SL, Smas ME, Ting DT, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science. 2013;339(6119):580–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Polioudaki H, Agelaki S, Chiotaki R, Politaki E, Mavroudis D, Matikas A, et al. Variable expression levels of keratin and vimentin reveal differential EMT status of circulating tumor cells and correlation with clinical characteristics and outcome of patients with metastatic breast cancer. BMC Cancer. 2015;15:399.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Hong Y, Zhang Q. Phenotype of circulating tumor cell: face-off between epithelial and mesenchymal masks. Tumour Biol. 2015;37(5):5663–74.

    Article  Google Scholar 

  117. van Zijl F et al. Epithelial to mesenchymal transition in hepatocellular carcinoma. Future Oncol. 2009;5(8):1169–79. https://doi.org/10.2217/fon.09.91.Epithelial.

  118. Gupta N. Pattern of fibronectin in HCC and its significance. Indian J Pathol Microbiol. 2006;49(3):362–4.

    PubMed  Google Scholar 

  119. Torbenson M, Wang J, Choti M, Ashfaq R, Maitra A, Wilentz RE, Boitnott J. Hepatocellular carcinomas show abnormal expression of fibronectin protein. Mod Pathol. 2002;15(8):826–30. https://doi.org/10.1097/01.MP.0000024257.83046.7C.

    Article  PubMed  Google Scholar 

  120. Sun Y, Song GD, Sun N, Chen JQ, Yang SS. Slug overexpression induces stemness and promotes hepatocellular carcinoma cell invasion and metastasis. Oncol Lett. 2014;7(6):1936–40. https://doi.org/10.3892/ol.2014.2037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xue TC, Ge NL, Zhang L, Cui JF, Chen RX, You Y, et al. Goosecoid promotes the metastasis of hepatocellular carcinoma by modulating the epithelial-mesenchymal transition. PLoS One. 2014;9(10):1–10. https://doi.org/10.1371/journal.pone.0109695.

    Google Scholar 

  122. Nart D, et al. Expression of matrix metalloproteinase-9 in predicting prognosis of Hepatocellular carcinoma after liver transplantation. Liver Transpl. 2010;16:621–30.

    PubMed  Google Scholar 

  123. Pasquier J, Abu-Kaoud N, Thani HA, Rafii A. Epithelial to mesenchymal transition in a clinical perspective. J Oncol. 2015;2015:792182. https://doi.org/10.1155/2015/792182.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Shen Y-C, Lin Z-Z, Hsu C-H, Hsu C, Shao Y-Y, Cheng A-L. Clinical trials in hepatocellular carcinoma: an update. Liver Cancer. 2013;2(3–4):345–64. https://doi.org/10.1159/000343850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ogunwobi OO, Liu C. Therapeutic and prognostic importance of epithelial–mesenchymal transition in liver cancers: insights from experimental models. Crit Rev Oncol Hematol. 2012;83(3):319–28. https://doi.org/10.1016/j.critrevonc.2011.11.007.

    Article  PubMed  Google Scholar 

  126. Shintani Y, et al. ADH-1 suppresses N-cadherin-dependent pancreatic cancer progression. Int J Cancer. 2008;122(1):71–7.

    Article  CAS  PubMed  Google Scholar 

  127. Chang W, et al. Quercetin in elimination of tumor initiating stem-like and mesenchymal transformation property in head and neck cancer. Head Neck. 2013;35(3):413–9.

    Article  PubMed  Google Scholar 

  128. Lahat G, et al. Vimentin is a novel anti-cancer therapeutic target; insights from In Vitro and In Vivo mice xenograft studies. PLoS One. 2010;5(4):e10105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Singh RP, et al. Silibinin inhibits established prostate tumor growth, progression, invasion, and metastasis and suppresses tumor angiogenesis and epithelial-mesenchymal transition in transgenic adenocarcinoma of the mouse prostate model mice. Clin Cancer Res. 2008;14(23):7773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wu KJ, et al. Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacol Sin. 2009;30(8):1162–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Dong T, et al. Salinomycin selectively targets ‘CD133+’ cell subpopulations and decreases malignant traits in colorectal cancer lines. Ann Surg Oncol. 2011;18(6):1797–804.

    Article  PubMed  Google Scholar 

  132. Chung MT, et al. SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol Oncol. 2009;112(3):646–53.

    Article  CAS  PubMed  Google Scholar 

  133. Zhuo W, et al. Knockdown of Snail, a novel zinc-finger transcription factor, via RNA interference increases A549 cell sensitivity to cisplatin via JNK/mitochondrial pathway. Lung Cancer. 2008;62(1):8–14.

    Article  PubMed  Google Scholar 

  134. Zhuo WL, et al. Short interfering RNA directed against TWIST, a novel zinc finger transcription factor, increases A549 cell sensitivity to cisplatin via MAPK/mitochondrial pathway. Biochem Biophys Res Commun. 2008;369(4):1098–102.

    Article  CAS  PubMed  Google Scholar 

  135. Srivastava R, et al. Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci (Elite Ed). 2011;3(2):515–28.

    Article  Google Scholar 

  136. Pai HC, et al. Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway. J Mol Med. 2013;91(3):347–56.

    Article  CAS  PubMed  Google Scholar 

  137. Hsu HY, et al. Fucoidan induces changes in the epithelial to mesenchymal transition and decreases metastasis by enhancing ubiquitin-dependent TGF-beta receptor degradation in breast cancer. Carcinogenesis. 2013;34(4):874–84.

    Article  CAS  PubMed  Google Scholar 

  138. Cho Y, Yoon J-H, Yoo J, Lee M, Lee DH, Cho EJ, et al. Fucoidan protects hepatocytes from apoptosis and inhibits invasion of hepatocellular carcinoma by up-regulating p42/44 MAPK-dependent NDRG-1/CAP43. Acta Pharm Sin B. 2015;5(6):544–53. https://doi.org/10.1016/j.apsb.2015.09.004.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yan MD, Yao CJ, Chow JM, Chang CL, Hwang PA, Chuang SE, et al. Fucoidan elevates MicroRNA-29b to regulate DNMT3B-MTSS1 axis and inhibit EMT in human hepatocellular carcinoma cells. Mar Drugs. 2015;13(10):6099–116. https://doi.org/10.3390/md13106099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Reka AK, et al. Identifying inhibitors of epithelial-mesenchymal transition by connectivity map-based systems approach. J Thorac Oncol. 2011;6(11):1784–92.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chua KN, et al. A cell-based small molecule screening method for identifying inhibitors of epithelial-mesenchymal transition in carcinoma. PLoS One. 2012;7(3):e33183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Huang XY, Ke AW, Shi GM, Zhang X, Zhang C, Shi YH, et al. αB-crystallin complexes with 14-3-3ζ to induce epithelial-mesenchymal transition and resistance to sorafenib in hepatocellular carcinoma. Hepatology. 2013;57(6):2235–47. https://doi.org/10.1002/hep.26255.

    Article  CAS  PubMed  Google Scholar 

  143. Chen J, Jin R, Zhao J, Liu J, Ying H, Yan H, et al. Potential molecular, cellular and microenvironmental mechanism of sorafenib resistance in hepatocellular carcinoma. Cancer Lett. 2015;367(1):1–11. https://doi.org/10.1016/j.canlet.2015.06.019.

    Article  CAS  PubMed  Google Scholar 

  144. Chen YL, Lv J, Ye XL, Sun MY, Xu Q, Liu CH, et al. Sorafenib inhibits transforming growth factor β1-Mediated Epithelial-Mesenchymal Transition and apoptosis in mouse hepatocytes. Hepatology. 2011;53(5):1708–18. https://doi.org/10.1002/hep.24254.

    Article  CAS  PubMed  Google Scholar 

  145. Franco-Chuaire ML, Magda Carolina SC, Chuaire-Noack L. Epithelial-mesenchymal transition (EMT): principles and clinical impact in cancer therapy. Invest Clin. 2013;54(2):186–205.

    PubMed  Google Scholar 

  146. Nantajit D, Lin D, Li JJ. The network of epithelial–mesenchymal transition: potential new targets for tumor resistance. J Cancer Res Clin Oncol. 2015;141(10):1697–713. https://doi.org/10.1007/s00432-014-1840-y.

    Article  CAS  PubMed  Google Scholar 

  147. Steinestel K, Eder S, et al. Clinical significance of epithelial-mesenchymal transition. Clin Transl Med. 2014;3:17. http://www.clintransmed.com/content/3/1/17

    Article  PubMed  PubMed Central  Google Scholar 

  148. Dong S, Kong J, Kong F, Gao J, Ji L, Pan B, et al. Sorafenib suppresses the epithelial-mesenchymal transition of hepatocellular carcinoma cells after insufficient radiofrequency ablation. BMC Cancer. 2015;15:939. https://doi.org/10.1186/s12885-015-1949-7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olorunseun O. Ogunwobi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Huaman, J., Bach, C., Ilboudo, A., Ogunwobi, O.O. (2018). Epithelial-to-Mesenchymal Transition in Hepatocellular Carcinoma. In: Liu, C. (eds) Precision Molecular Pathology of Liver Cancer. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-68082-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68082-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68080-4

  • Online ISBN: 978-3-319-68082-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics