Skip to main content

Biomarker Discovery and Validation in HCC Diagnosis, Prognosis, and Therapy

  • Chapter
  • First Online:
Precision Molecular Pathology of Liver Cancer

Part of the book series: Molecular Pathology Library ((MPLB))

Abstract

Biomarkers are critical for the diagnosis, prognostication, and management of liver cancer and have been developed significantly in the past decade, in part due to the advancement in molecular diagnostics and precision medicine. The recent updates, discovery, and validation of liver cancer biomarkers will be reviewed here, as well as the methodological considerations on cancer biomarker research. Specifically, the epidemiological considerations on cancer biomarkers are discussed including the comparisons of companion and complementary diagnostics. Practical perspectives are also provided on the established and emerging biomarkers for the diagnosis, prognosis, and treatment of liver cancer, as well as future research directions on the liver cancer biomarker discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    Article  PubMed  Google Scholar 

  2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.

    Article  PubMed  Google Scholar 

  3. Yu SJ. A concise review of updated guidelines regarding the management of hepatocellular carcinoma around the world: 2010-2016. Clin Mol Hepatol. 2016;22:7–17.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sangiovanni A, Colombo M. Treatment of hepatocellular carcinoma: beyond international guidelines. Liver Int. 2016;36(Suppl 1):124–9.

    Article  PubMed  Google Scholar 

  5. NCCN. NCCN guidelines: hepatobiliary cancers. NNCN; 2016.

    Google Scholar 

  6. Tsuchiya N, Sawada Y, Endo I, Saito K, Uemura Y, Nakatsura T. Biomarkers for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2015;21:10573–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chaiteerakij R, Addissie BD, Roberts LR. Update on biomarkers of hepatocellular carcinoma. Clin Gastroenterol Hepatol. 2015;13:237–45.

    Article  CAS  PubMed  Google Scholar 

  8. Simon R. Sensitivity, specificity, PPV, and NPV for predictive biomarkers. J Natl Cancer Inst. 2015;107:djv153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Janes H, Pepe MS, McShane LM, Sargent DJ, Heagerty PJ. The fundamental difficulty with evaluating the accuracy of biomarkers for guiding treatment. J Natl Cancer Inst. 2015;107:djv157.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sawyers CL. The cancer biomarker problem. Nature. 2008;452:548–52.

    Article  CAS  PubMed  Google Scholar 

  11. Birkeland ML, McClure JS. Optimizing the clinical utility of biomarkers in oncology: the NCCN biomarkers compendium. Arch Pathol Lab Med. 2015;139:608–11.

    Article  PubMed  Google Scholar 

  12. Fitzgibbons PL, Lazar AJ, Spencer S. Introducing new College of American Pathologists reporting templates for cancer biomarkers. Arch Pathol Lab Med. 2014;138:157–8.

    Article  PubMed  Google Scholar 

  13. Cagle PT, Sholl LM, Lindeman NI, Alsabeh R, Divaris DX, Foulis P, et al. Template for reporting results of biomarker testing of specimens from patients with non-small cell carcinoma of the lung. Arch Pathol Lab Med. 2014;138:171–4.

    Article  PubMed  Google Scholar 

  14. Chiosea S, Asa SL, Berman MA, Carty SE, Currence L, Hodak S, et al. Template for reporting results of biomarker testing of specimens from patients with thyroid carcinoma. Arch Pathol Lab Med. 2017;141(4):559–63.

    Article  PubMed  Google Scholar 

  15. Azuaje F, Devaux Y, Wagner D. Challenges and standards in reporting diagnostic and prognostic biomarker studies. Clin Transl Sci. 2009;2:156–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ransohoff DF. How to improve reliability and efficiency of research about molecular markers: roles of phases, guidelines, and study design. J Clin Epidemiol. 2007;60:1205–19.

    Article  PubMed  Google Scholar 

  17. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162:55–63.

    Article  PubMed  Google Scholar 

  18. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527.

    Article  PubMed  PubMed Central  Google Scholar 

  19. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005;97:1180–4.

    Article  CAS  PubMed  Google Scholar 

  20. Duffy MJ, Sturgeon CM, Soletormos G, Barak V, Molina R, Hayes DF, et al. Validation of new cancer biomarkers: a position statement from the European group on tumor markers. Clin Chem. 2015;61:809–20.

    Article  CAS  PubMed  Google Scholar 

  21. Soletormos G, Duffy MJ, Hayes DF, Sturgeon CM, Barak V, Bossuyt PM, et al. Design of tumor biomarker-monitoring trials: a proposal by the European Group on Tumor Markers. Clin Chem. 2013;59:52–9.

    Google Scholar 

  22. Andre F, McShane LM, Michiels S, Ransohoff DF, Altman DG, Reis-Filho JS, et al. Biomarker studies: a call for a comprehensive biomarker study registry. Nat Rev Clin Oncol. 2011;8:171–6.

    Article  PubMed  Google Scholar 

  23. Fine JP, Pencina M. On the quantitative assessment of predictive biomarkers. J Natl Cancer Inst. 2015;107:djv187.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Simon R. Stratification and partial ascertainment of biomarker value in biomarker-driven clinical trials. J Biopharm Stat. 2014;24:1011–21.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rundle A, Ahsan H, Vineis P. Better cancer biomarker discovery through better study design. Eur J Clin Invest. 2012;42:1350–9.

    Article  CAS  PubMed  Google Scholar 

  26. McShane LM, Hayes DF. Publication of tumor marker research results: the necessity for complete and transparent reporting. J Clin Oncol. 2012;30:4223–32.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kern SE. Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res. 2012;72:6097–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baker SG, Kramer BS, Sargent DJ, Bonetti M. Biomarkers, subgroup evaluation, and clinical trial design. Discov Med. 2012;13:187–92.

    PubMed  Google Scholar 

  29. Ahern TP, Hankinson SE. Re: use of archived specimens in evaluation of prognostic and predictive biomarkers. J Natl Cancer Inst. 2011;103:1558–9; author reply 9–60.

    Google Scholar 

  30. Vaught JB, Hsing AW. Methodologic data: important foundation for molecular and biomarker studies. Cancer Epidemiol Biomarkers Prev. 2010;19:901–2.

    Article  CAS  PubMed  Google Scholar 

  31. Diamandis EP. Cancer biomarkers: can we turn recent failures into success? J Natl Cancer Inst. 2010;102:1462–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pepe MS, Feng Z, Janes H, Bossuyt PM, Potter JD. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst. 2008;100:1432–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Diamandis EP, Hoffman BR, Sturgeon CM. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for the use of tumor markers. Clin Chem. 2008;54:1935–9.

    Article  CAS  PubMed  Google Scholar 

  34. Administration USFaD. In vitro companion diagnostic devices: guidance for industry and food and drug administration staff. In: Services DoHaH, editor. U.S. Food and Drug Administration; 2014.

    Google Scholar 

  35. Administration USFaD. Administration, hematology/oncology (cancer) approvals & safety notifications. 2016.

    Google Scholar 

  36. Sholl LM, Aisner DL, Allen TC, Beasley MB, Borczuk AC, Cagle PT, et al. Programmed death Ligand-1 immunohistochemistry—a new challenge for pathologists: a perspective from Members of the Pulmonary Pathology Society. Arch Pathol Lab Med. 2016;140:341–4.

    Article  PubMed  Google Scholar 

  37. Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csoszi T, Fulop A, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  38. Ferris RL, Blumenschein G Jr, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.

    Article  PubMed  Google Scholar 

  40. Brahmer J, Reckamp KL, Baas P, Crino L, Eberhardt WE, Poddubskaya E, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373:123–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kazandjian D, Suzman DL, Blumenthal G, Mushti S, He K, Libeg M, et al. FDA approval summary: nivolumab for the treatment of metastatic non-small cell lung cancer with progression on or after platinum-based chemotherapy. Oncologist. 2016;21:634–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Novotny JF Jr, Cogswell J, Inzunza H, Harbison C, Horak C, Averbuch S. Establishing a complementary diagnostic for anti-PD-1 immune checkpoint inhibitor therapy. Ann Oncol. 2016;27:1966–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meng X, Huang Z, Teng F, Xing L, Yu J. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 2015;41:868–76.

    Article  CAS  PubMed  Google Scholar 

  45. Administration USFaD. FDA expands approved use of Opdivo in advanced lung cancer. 2015.

    Google Scholar 

  46. Milne CP, Bryan C, Garafalo S, McKiernan M. Complementary versus companion diagnostics: apples and oranges? Biomark Med. 2015;9:25–34.

    Article  CAS  PubMed  Google Scholar 

  47. Administration USFaD. VENTANA PD-L1 (SP142) Assay: insert. 1015005EN Rev A ed2016.

    Google Scholar 

  48. Administration USFaD. DAKO PD-L1 IHC 22C3 pharmDx: Insert. P03951_02/SK00621-5/2015.09 ed2015.

    Google Scholar 

  49. Scheel AH, Dietel M, Heukamp LC, Johrens K, Kirchner T, Reu S, et al. Harmonized PD-L1 immunohistochemistry for pulmonary squamous-cell and adenocarcinomas. Mod Pathol. 2016;29:1165–72.

    Article  CAS  PubMed  Google Scholar 

  50. Gaule P, Smithy JW, Toki M, Rehman J, Patell-Socha F, Cougot D, et al. A quantitative comparison of antibodies to programmed cell death 1 ligand 1. JAMA Oncol. 2016 Aug 18. doi: 10.1001/jamaoncol.2016.3015. [Epub ahead of print]

  51. Chow PK, Choo SP, Ng DC, Lo RH, Wang ML, Toh HC, et al. National Cancer Centre Singapore consensus guidelines for hepatocellular carcinoma. Liver Cancer. 2016;5:97–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kokudo N, Hasegawa K, Akahane M, Igaki H, Izumi N, Ichida T, et al. Evidence-based clinical practice guidelines for hepatocellular carcinoma: the Japan Society of Hepatology 2013 update (3rd JSH-HCC Guidelines). Hepatol Res. 2015;45:123–7.

    Google Scholar 

  53. Burak KW, Sherman M. Hepatocellular carcinoma: consensus, controversies and future directions. A report from the Canadian Association for the Study of the Liver Hepatocellular Carcinoma Meeting. Can J Gastroenterol Hepatol. 2015;29:178–84.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lee SC, Tan HT, Chung MC. Prognostic biomarkers for prediction of recurrence of hepatocellular carcinoma: current status and future prospects. World J Gastroenterol. 2014;20:3112–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Verslype C, Rosmorduc O, Rougier P. Hepatocellular carcinoma: ESMO-ESDO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncology. 2012;23(Suppl 7):vii41–8.

    Article  Google Scholar 

  56. Sherman M, Bruix J, Porayko M, Tran T. Screening for hepatocellular carcinoma: the rationale for the American Association for the Study of Liver Diseases recommendations. Hepatology (Baltimore, MD). 2012;56:793–6.

    Article  Google Scholar 

  57. Qin S. Guidelines on the diagnosis and treatment of primary liver cancer (2011 edition). Chin Clin Oncol. 2012;1:10.

    PubMed  Google Scholar 

  58. 2011 European Association of the Study of the Liver hepatitis C virus clinical practice guidelines. Liver Int. 2012;32 Suppl 1:2–8.

    Google Scholar 

  59. Sturgeon CM, Duffy MJ, Hofmann BR, Lamerz R, Fritsche HA, Gaarenstroom K, et al. National Academy of Clinical Biochemistry Laboratory Medicine Practice Guidelines for use of tumor markers in liver, bladder, cervical, and gastric cancers. Clin Chem. 2010;56:e1–48.

    Article  CAS  PubMed  Google Scholar 

  60. Benson AB 3rd, Abrams TA, Ben-Josef E, Bloomston PM, Botha JF, Clary BM, et al. NCCN clinical practice guidelines in oncology: hepatobiliary cancers. J Natl Compr Canc Netw. 2009;7:350–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhao C, Nguyen MH. Hepatocellular carcinoma screening and surveillance: practice guidelines and real-life practice. J Clin Gastroenterol. 2016;50(2):120–33.

    Article  CAS  PubMed  Google Scholar 

  62. Clinical Practice Guidelines for Hepatocellular Carcinoma Differ between Japan, United States, and Europe. Liver Cancer. 2015;4:85–95.

    Google Scholar 

  63. Song DS, Bae SH. Changes of guidelines diagnosing hepatocellular carcinoma during the last ten-year period. Clin Mol Hepatol. 2012;18:258–67.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bota S, Piscaglia F, Marinelli S, Pecorelli A, Terzi E, Bolondi L. Comparison of international guidelines for noninvasive diagnosis of hepatocellular carcinoma. Liver Cancer. 2012;1:190–200.

    Article  PubMed  PubMed Central  Google Scholar 

  65. McPherson RA, Pincus MR, Henry JB. Henry’s clinical diagnosis and management by laboratory methods. 22nd ed. Philadelphia: Elsevier Saunders; 2011.

    Google Scholar 

  66. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology (Baltimore, MD). 2011;53:1020–2.

    Article  PubMed Central  Google Scholar 

  67. European Association For The Study Of The Liver, European Organisation For Research And Treatment Of Cancer. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. 2012;56:908–43.

    Article  Google Scholar 

  68. Sastre J, Diaz-Beveridge R, Garcia-Foncillas J, Guardeno R, Lopez C, Pazo R, et al. Clinical guideline SEOM: hepatocellular carcinoma. Clin Transl Oncol. 2015;17:988–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Omata M, Lesmana LA, Tateishi R, Chen PJ, Lin SM, Yoshida H, et al. Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma. Hepatol Int. 2010;4:439–74.

    Article  PubMed  PubMed Central  Google Scholar 

  70. 2014 Korean Liver Cancer Study Group-National Cancer Center Korea practice guideline for the management of hepatocellular carcinoma. Korean J Radiol. 2015;16:465–522.

    Google Scholar 

  71. Kudo M, Matsui O, Izumi N, Iijima H, Kadoya M, Imai Y, et al. JSH consensus-based clinical practice guidelines for the Management of Hepatocellular Carcinoma: 2014 Update by the Liver Cancer Study Group of Japan. Liver Cancer. 2014;3:458–68.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mendez-Sanchez N, Ridruejo E, Alves de Mattos A, Chavez-Tapia NC, Zapata R, Parana R, et al. Latin American Association for the Study of the Liver (LAASL) clinical practice guidelines: management of hepatocellular carcinoma. Ann Hepatol. 2014;13(Suppl 1):S4–40.

    Google Scholar 

  73. Marrero JA, El-Serag HB. Alpha-fetoprotein should be included in the hepatocellular carcinoma surveillance guidelines of the American Association for the Study of Liver Diseases. Hepatology (Baltimore, MD). 2011;53:1060–1; author reply 1–2.

    Google Scholar 

  74. Marrero JA, Feng Z, Wang Y, Nguyen MH, Befeler AS, Roberts LR, et al. Alpha-fetoprotein, des-gamma carboxyprothrombin, and lectin-bound alpha-fetoprotein in early hepatocellular carcinoma. Gastroenterology. 2009;137:110–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Leerapun A, Suravarapu SV, Bida JP, Clark RJ, Sanders EL, Mettler TA, et al. The utility of Lens culinaris agglutinin-reactive alpha-fetoprotein in the diagnosis of hepatocellular carcinoma: evaluation in a United States referral population. Clin Gastroenterol Hepatol. 2007;5:394–402; quiz 267.

    Google Scholar 

  76. Ono M, Ohta H, Ohhira M, Sekiya C, Namiki M. Measurement of immunoreactive prothrombin precursor and vitamin-K-dependent gamma-carboxylation in human hepatocellular carcinoma tissues: decreased carboxylation of prothrombin precursor as a cause of des-gamma-carboxyprothrombin synthesis. Tumour Biol. 1990;11:319–26.

    Article  CAS  PubMed  Google Scholar 

  77. Korean Liver Cancer Study Group, National Cancer Center, Korea. 2014 KLCSG-NCC Korea Practice Guideline for the Management of Hepatocellular Carcinoma. Gut Liver. 2015;9:267–317.

    Google Scholar 

  78. Miyahara K, Nouso K, Tomoda T, Kobayashi S, Hagihara H, Kuwaki K, et al. Predicting the treatment effect of sorafenib using serum angiogenesis markers in patients with hepatocellular carcinoma. J Gastroenterol Hepatol. 2011;26:1604–11.

    Article  CAS  PubMed  Google Scholar 

  79. Yamashita T, Forgues M, Wang W, Kim JW, Ye Q, Jia H, et al. EpCAM and alpha-fetoprotein expression defines novel prognostic subtypes of hepatocellular carcinoma. Cancer Res. 2008;68:1451–61.

    Article  CAS  PubMed  Google Scholar 

  80. Ji J, Shi J, Budhu A, Yu Z, Forgues M, Roessler S, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361:1437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Villanueva A, Hoshida Y, Battiston C, Tovar V, Sia D, Alsinet C, et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology. 2011;140:1501–12.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hoshida Y, Villanueva A, Kobayashi M, Peix J, Chiang DY, Camargo A, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359:1995–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hatzaras I, Bischof DA, Fahy B, Cosgrove D, Pawlik TM. Treatment options and surveillance strategies after therapy for hepatocellular carcinoma. Ann Surg Oncol. 2014;21:758–66.

    Article  PubMed  Google Scholar 

  84. Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, et al. Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology (Baltimore, MD). 2007;45:938–47.

    Article  CAS  Google Scholar 

  85. Zucman-Rossi J, Villanueva A, Nault JC, Llovet JM. Genetic landscape and biomarkers of hepatocellular carcinoma. Gastroenterology. 2015;149:1226–39.e4.

    Article  CAS  PubMed  Google Scholar 

  86. Llovet JM, Villanueva A, Lachenmayer A, Finn RS. Advances in targeted therapies for hepatocellular carcinoma in the genomic era. Nat Rev Clin Oncol. 2015;12:436.

    Article  PubMed  Google Scholar 

  87. Quetglas IM, Moeini A, Pinyol R, Llovet JM. Integration of genomic information in the clinical management of HCC. Best Pract Res Clin Gastroenterol. 2014;28:831–42.

    Article  CAS  PubMed  Google Scholar 

  88. Villanueva A, Portela A, Sayols S, Battiston C, Hoshida Y, Mendez-Gonzalez J, et al. DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology (Baltimore, MD). 2015;61:1945–56.

    Article  CAS  Google Scholar 

  89. Banaudha KK, Verma M. Epigenetic biomarkers in liver cancer. Methods Mol Biol (Clifton, NJ). 2015;1238:65–76.

    Article  Google Scholar 

  90. Committee on the Review of Omics-Based Tests for Predicting Patient Outcomes in Clinical Trials, Board on Health Care Services, Board on Health Sciences Policy, Institute of Medicine. Evolution of translational omics: lessons learned and the path forward. Washington (DC): National Academies Press (US); 2012. Copyright 2012 by the National Academy of Sciences. All rights reserved; 2012.

    Google Scholar 

  91. Jiang L, Cheng Q, Zhang BH, Zhang MZ. Circulating microRNAs as biomarkers in hepatocellular carcinoma screening: a validation set from China. Medicine (Baltimore). 2015;94:e603.

    Article  CAS  Google Scholar 

  92. Anwar SL, Lehmann U. MicroRNAs: emerging novel clinical biomarkers for hepatocellular carcinomas. J Clin Med. 2015;4:1631–50.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Li X, Yang W, Lou L, Chen Y, Wu S, Ding G. microRNA: a promising diagnostic biomarker and therapeutic target for hepatocellular carcinoma. Dig Dis Sci. 2014;59:1099–107.

    Article  CAS  PubMed  Google Scholar 

  94. Capurro M, Wanless IR, Sherman M, Deboer G, Shi W, Miyoshi E, et al. Glypican-3: a novel serum and histochemical marker for hepatocellular carcinoma. Gastroenterology. 2003;125:89–97.

    Article  CAS  PubMed  Google Scholar 

  95. Ozkan H, Erdal H, Kocak E, Tutkak H, Karaeren Z, Yakut M, et al. Diagnostic and prognostic role of serum glypican 3 in patients with hepatocellular carcinoma. J Clin Lab Anal. 2011;25:350–3.

    Article  PubMed  CAS  Google Scholar 

  96. Xu C, Yan Z, Zhou L, Wang Y. A comparison of glypican-3 with alpha-fetoprotein as a serum marker for hepatocellular carcinoma: a meta-analysis. J Cancer Res Clin Oncol. 2013;139:1417–24.

    Article  CAS  PubMed  Google Scholar 

  97. Attallah AM, El-Far M, Omran MM, Abdelrazek MA, Attallah AA, Saeed AM, et al. GPC-HCC model: a combination of glybican-3 with other routine parameters improves the diagnostic efficacy in hepatocellular carcinoma. Tumour Biol. 2016;37:12571–7.

    Article  CAS  PubMed  Google Scholar 

  98. Lee HJ, Yeon JE, Suh SJ, Lee SJ, Yoon EL, Kang K, et al. Clinical utility of plasma glypican-3 and osteopontin as biomarkers of hepatocellular carcinoma. Gut Liver. 2014;8:177–85.

    Article  CAS  PubMed  Google Scholar 

  99. Duarte-Salles T, Misra S, Stepien M, Plymoth A, Muller D, Overvad K, et al. Circulating osteopontin and prediction of hepatocellular carcinoma development in a large European population. Cancer Prev Res (Phila). 2016;9:758–65.

    Article  CAS  Google Scholar 

  100. Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, Fimmel CJ, et al. GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol. 2005;43:1007–12.

    Article  CAS  PubMed  Google Scholar 

  101. Mao Y, Yang H, Xu H, Lu X, Sang X, Du S, et al. Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut. 2010;59:1687–93.

    Article  CAS  PubMed  Google Scholar 

  102. Dai M, Chen X, Liu X, Peng Z, Meng J, Dai S. Diagnostic value of the combination of Golgi protein 73 and alpha-fetoprotein in hepatocellular carcinoma: a meta-analysis. PLoS One. 2015;10:e0140067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Tian L, Wang Y, Xu D, Gui J, Jia X, Tong H, et al. Serological AFP/Golgi protein 73 could be a new diagnostic parameter of hepatic diseases. Int J Cancer. 2011;129:1923–31.

    Article  CAS  PubMed  Google Scholar 

  104. Wang M, Long RE, Comunale MA, Junaidi O, Marrero J, Di Bisceglie AM, et al. Novel fucosylated biomarkers for the early detection of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev. 2009;18:1914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chi KR. The tumour trail left in blood. Nature. 2016;532:269–71.

    Article  CAS  PubMed  Google Scholar 

  106. Jung K, Fleischhacker M, Rabien A. Cell-free DNA in the blood as a solid tumor biomarker—a critical appraisal of the literature. Clin Chim Acta. 2010;411:1611–24.

    Article  CAS  PubMed  Google Scholar 

  107. Chen K, Zhang H, Zhang LN, Ju SQ, Qi J, Huang DF, et al. Value of circulating cell-free DNA in diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2013;19:3143–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tabernero J, Lenz HJ, Siena S, Sobrero A, Falcone A, Ychou M, et al. Analysis of circulating DNA and protein biomarkers to predict the clinical activity of regorafenib and assess prognosis in patients with metastatic colorectal cancer: a retrospective, exploratory analysis of the CORRECT trial. Lancet Oncol. 2015;16:937–48.

    Article  CAS  PubMed  Google Scholar 

  109. Su YH, Lin SY, Song W, Jain S. DNA markers in molecular diagnostics for hepatocellular carcinoma. Expert Rev Mol Diagn. 2014;14:803–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sabile A, Louha M, Bonte E, Poussin K, Vona G, Mejean A, et al. Efficiency of Ber-EP4 antibody for isolating circulating epithelial tumor cells before RT-PCR detection. Am J Clin Pathol. 1999;112:171–8.

    Article  CAS  PubMed  Google Scholar 

  111. Zhang Y, Li J, Cao L, Xu W, Yin Z. Circulating tumor cells in hepatocellular carcinoma: detection techniques, clinical implications, and future perspectives. Semin Oncol. 2012;39:449–60.

    Article  CAS  PubMed  Google Scholar 

  112. Chiappini F. Circulating tumor cells measurements in hepatocellular carcinoma. Int J Hepatol. 2012;2012:684802.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liu YK, Hu BS, Li ZL, He X, Li Y, Lu LG. An improved strategy to detect the epithelial-mesenchymal transition process in circulating tumor cells in hepatocellular carcinoma patients. Hepatol Int. 2016;10:640–6.

    Article  PubMed  Google Scholar 

  114. Zhu L, Zhang W, Wang J, Liu R. Evidence of CD90+CXCR4+ cells as circulating tumor stem cells in hepatocellular carcinoma. Tumour Biol. 2015;36:5353–60.

    Article  CAS  PubMed  Google Scholar 

  115. Wang S, Zhang C, Wang G, Cheng B, Wang Y, Chen F, et al. Aptamer-mediated transparent-biocompatible nanostructured surfaces for hepotocellular circulating tumor cells enrichment. Theranostics. 2016;6:1877–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fan JL, Yang YF, Yuan CH, Chen H, Wang FB. Circulating tumor cells for predicting the prognostic of patients with hepatocellular carcinoma: a meta analysis. Cell Physiol Biochem. 2015;37:629–40.

    Article  CAS  PubMed  Google Scholar 

  117. Huang JW, Liu B, Hu BS, Li Y, He X, Zhao W, et al. Clinical value of circulating tumor cells for the prognosis of postoperative transarterial chemoembolization therapy. Med Oncol. 2014;31:175.

    Article  PubMed  CAS  Google Scholar 

  118. Zhou Y, Wang B, Wu J, Zhang C, Zhou Y, Yang X, et al. Association of preoperative EpCAM Circulating Tumor Cells and peripheral Treg cell levels with early recurrence of hepatocellular carcinoma following radical hepatic resection. BMC Cancer. 2016;16:506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Wu LJ, Pan YD, Pei XY, Chen H, Nguyen S, Kashyap A, et al. Capturing circulating tumor cells of hepatocellular carcinoma. Cancer Lett. 2012;326:17–22.

    Article  CAS  PubMed  Google Scholar 

  120. Sun YF, Xu Y, Yang XR, Guo W, Zhang X, Qiu SJ, et al. Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology (Baltimore, MD). 2013;57:1458–68.

    Article  CAS  Google Scholar 

  121. Nel I, Baba HA, Weber F, Sitek B, Eisenacher M, Meyer HE, et al. IGFBP1 in epithelial circulating tumor cells as a potential response marker to selective internal radiation therapy in hepatocellular carcinoma. Biomark Med. 2014;8:687–98.

    Article  CAS  PubMed  Google Scholar 

  122. Li J, Shi L, Zhang X, Sun B, Yang Y, Ge N, et al. pERK/pAkt phenotyping in circulating tumor cells as a biomarker for sorafenib efficacy in patients with advanced hepatocellular carcinoma. Oncotarget. 2016;7:2646–59.

    Article  PubMed  Google Scholar 

  123. Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, et al. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science. 2014;345:216–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhang Y, Zhang X, Zhang J, Sun B, Zheng L, Li J, et al. Microfluidic chip for isolation of viable circulating tumor cells of hepatocellular carcinoma for their culture and drug sensitivity assay. Cancer Biol Ther. 2016;17:1177–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kalluri R. The biology and function of exosomes in cancer. J Clin Invest. 2016;126:1208–15.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S, et al. Tumour-released exosomes and their implications in cancer immunity. Cell Death Differ. 2008;15:80–8.

    Article  CAS  PubMed  Google Scholar 

  127. Mignot G, Roux S, Thery C, Segura E, Zitvogel L. Prospects for exosomes in immunotherapy of cancer. J Cell Mol Med. 2006;10:376–88.

    Article  CAS  PubMed  Google Scholar 

  128. Lv LH, Wan YL, Lin Y, Zhang W, Yang M, Li GL, et al. Anticancer drugs cause release of exosomes with heat shock proteins from human hepatocellular carcinoma cells that elicit effective natural killer cell antitumor responses in vitro. J Biol Chem. 2012;287:15874–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wu Z, Zeng Q, Cao K, Sun Y. Exosomes: small vesicles with big roles in hepatocellular carcinoma. Oncotarget. 2016;7:60687–97.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cai S, Cheng X, Pan X, Li J. Emerging role of exosomes in liver physiology and pathology. Hepatol Res. 2016 Aug 18. doi: 10.1111/hepr.12794. [Epub ahead of print]

  131. Sugimachi K, Matsumura T, Hirata H, Uchi R, Ueda M, Ueo H, et al. Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. Br J Cancer. 2015;112:532–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Schroeck FR, Kaufman SR, Jacobs BL, Skolarus TA, Miller DC, Weizer AZ, et al. Technology diffusion and diagnostic testing for prostate cancer. J Urol. 2013;190:1715–20.

    Article  PubMed  Google Scholar 

  133. Kasumi WT, Kasumi A, Ishikawa B. The spread of upper gastrointestinal endoscopy in Japan and the United States. An international comparative analysis of technology diffusion. Int J Technol Assess Health Care. 1993;9:416–25.

    Article  CAS  PubMed  Google Scholar 

  134. Shen C, Tina Shih YC. Therapeutic substitutions in the midst of new technology diffusion: the case of treatment for localized prostate cancer. Soc Sci Med (1982). 2016;151:110–20.

    Article  Google Scholar 

  135. Schroeck FR, Kaufman SR, Jacobs BL, Skolarus TA, Zhang Y, Hollenbeck BK. Technology diffusion and prostate cancer quality of care. Urology. 2014;84:1066–72.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Schroeck FR, Kaufman SR, Jacobs BL, Zhang Y, Weizer AZ, Montgomery JS, et al. The impact of technology diffusion on treatment for prostate cancer. Med Care. 2013;51:1076–84.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wyber R, Vaillancourt S, Perry W, Mannava P, Folaranmi T, Celi LA. Big data in global health: improving health in low- and middle-income countries. Bull World Health Organ. 2015;93:203–8.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Tanaka S, Tanaka S, Kawakami K. Methodological issues in observational studies and non-randomized controlled trials in oncology in the era of big data. Jpn J Clin Oncol. 2015;45:323–7.

    Article  PubMed  Google Scholar 

  139. Mooney SJ, Westreich DJ, El-Sayed AM. Commentary: epidemiology in the era of big data. Epidemiology (Cambridge, MA). 2015;26:390–4.

    Article  Google Scholar 

  140. Kaplan RM, Chambers DA, Glasgow RE. Big data and large sample size: a cautionary note on the potential for bias. Clin Transl Sci. 2014;7:342–6.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Dutruel C, Thole J, Geels M, Mollenkopf HJ, Ottenhoff T, Guzman CA, et al. TRANSVAC workshop on standardisation and harmonisation of analytical platforms for HIV, TB and malaria vaccines: ‘how can big data help?’. Vaccine. 2014;32:4365–8.

    Article  CAS  PubMed  Google Scholar 

  142. Kinzler M, Zhang L. Underutilization of meta-analysis in diagnostic pathology. Arch Pathol Lab Med. 2015;139:1302–7.

    Article  PubMed  Google Scholar 

  143. Marchevsky AM, Wick MR. Evidence-based pathology: systematic literature reviews as the basis for guidelines and best practices. Arch Pathol Lab Med. 2015;139:394–9.

    Article  PubMed  Google Scholar 

  144. Mayo E, Kinzler M, Zhang L. Considerations for conducting meta-analysis in diagnostic pathology. Arch Pathol Lab Med. 2015;139:1331.

    Article  PubMed  Google Scholar 

  145. Wu Y, Johnson KB, Roccaro G, Lopez J, Zheng H, Muiru A, et al. Poor adherence to AASLD guidelines for chronic hepatitis B Management and treatment in a large academic medical center. Am J Gastroenterol. 2014;109:867–75.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Leoni S, Piscaglia F, Serio I, Terzi E, Pettinari I, Croci L, et al. Adherence to AASLD guidelines for the treatment of hepatocellular carcinoma in clinical practice: experience of the Bologna Liver Oncology Group. Dig Liver Dis. 2014;46:549–55.

    Article  PubMed  Google Scholar 

  147. Borzio M, Fornari F, De Sio I, Andriulli A, Terracciano F, Parisi G, et al. Adherence to American Association for the Study of Liver Diseases guidelines for the management of hepatocellular carcinoma: results of an Italian field practice multicenter study. Future Oncol (London, England). 2013;9:283–94.

    Article  CAS  Google Scholar 

  148. Sharma P, Saini SD, Kuhn LB, Rubenstein JH, Pardi DS, Marrero JA, et al. Knowledge of hepatocellular carcinoma screening guidelines and clinical practices among gastroenterologists. Dig Dis Sci. 2011;56:569–77.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanjing Zhang M.D., M.S., F.C.A.P., F.A.C.G. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, L. (2018). Biomarker Discovery and Validation in HCC Diagnosis, Prognosis, and Therapy. In: Liu, C. (eds) Precision Molecular Pathology of Liver Cancer. Molecular Pathology Library. Springer, Cham. https://doi.org/10.1007/978-3-319-68082-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68082-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68080-4

  • Online ISBN: 978-3-319-68082-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics