Advertisement

Semi-Analytical Methods for Complex Optimization of Non-Markov Queueing Networks

  • Vladimir N. ZadorozhnyiEmail author
  • Maksim A. Kornach
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 800)

Abstract

Effective analytic-imitational methods for complex optimization of routing matrices and node efficiencies in non-Markov queueing networks are proposed, and the optimization is to be carried out by the minimum of the mean time required for a claim to pass through the network. The characteristic feature of the method is a prompt and precise calculation of the target function, based on the varied transition probabilities. Consideration is given to the possibility to represent the roads in traffic networks as multiserver systems, in which the servicing intensities depend on the load coefficients. The method for complex optimization of networks with such multiserver nodes is developed. The application results are given.

Keywords

Non-Markov queueing networks Variable service intensity Gradient optimization methods Monte Carlo simulation Traffic networks 

References

  1. 1.
    Zadorozhnyi, V.N.: Optimization of uniform non-Markov queueing networks using resources and transition probabilities redistribution. In: Dudin, A., Gortsev, A., Nazarov, A., Yakupov, R. (eds.) ITMM 2016. CCIS, vol. 638, pp. 366–381. Springer, Cham (2016). doi: 10.1007/978-3-319-44615-8_32 CrossRefGoogle Scholar
  2. 2.
    Kleijnen, J.P.C.: Statistical Techniques in Simulation, Part 1. Marcel Dekker, New York (1974)zbMATHGoogle Scholar
  3. 3.
    Johnson, M.E., Jackson, J.: Infinitesimal perturbation analysis: a tool for simulation. J. Oper. Res. Soc. 40(3), 134–160 (1989)CrossRefGoogle Scholar
  4. 4.
    Rubinstein, R.Y.: Sensitivity analysis of computer simulation models via the efficient score. Oper. Res. 37, 72–81 (1989)CrossRefGoogle Scholar
  5. 5.
    Suri, R., Zazanis, M.: Perturbation analysis gives strongly consistent sensitivity estimates for the M/G/1 queue. Manag. Sci. 34, 39–64 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Zadorozhnyi, V.N.: Optimizing uniform non-Markov queueing networks. Autom. Remote Control 71(6), 1158–1169 (2010). doi: 10.1134/S0005117910060172. ISSN 0005–1179CrossRefzbMATHGoogle Scholar
  7. 7.
    Zadorozhnyi, V.N.: Channels distribution in non-Markovian queueing networks. Omsk Sci. Bull. 1(87), 5–10 (2010)Google Scholar
  8. 8.
    Zadorozhnyi, V.N.: Simulation modeling of fractal queues. In: Dynamics of Systems, Mechanisms and Machines (Dynamics 2014), pp. 1–4 (2015). doi: 10.1109/Dynamics.2014.7005703
  9. 9.
    Tsitsiashvili, G.: Parametric and structural optimization of the queuing network throughput. Autom. Remote Control 68(7), 1177–1185 (2007). doi: 10.1134/S0005117907070065 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kleinrock, L.: Queueing Systems: Computer Applications, vol. 2. Wiley Interscience, New York (1976). 576 pageszbMATHGoogle Scholar
  11. 11.
    Vishnevskiy, V.M.: Theoretical Bases of Designing Computer Networks. Technosphere, Moscow (2003). 512 pagesGoogle Scholar
  12. 12.
    Moiseev, A.A., Nazarov, A.N.: Infinitely Linear Systems and Queuing Networks. NTL Publishing House, Tomsk (2015). 240 pages. (in Russian)Google Scholar
  13. 13.
    Haight, F.A.: Mathematical Theories of Traffic Flow. Academic Press, New York (1963). 225 pageszbMATHGoogle Scholar
  14. 14.
    Daganzo, C.F.: Urban gridlock: macroscopic modeling and mitigation approaches. Transp. Part B 41, 49–62 (2007)CrossRefGoogle Scholar
  15. 15.
    Zadorozhnyi, V.N., Kornach, M.A.: Optimization of transport queueing networks on the basis of the method of directing hyperbole. In: 2016 International Siberian Conference on Control and Communications, SIBCON. Control of the Large-Scale Systems, Moscow, Russia, 12–14 May 2016. doi: 10.1109/SIBCON.2016.7491716
  16. 16.
    Zadorozhnyi, V.N.: Analytical-Simulation Research of Queuing Systems and Networks. Omsk State Technical University Publishing House, Omsk (2010). 280 pages. (in Russian)zbMATHGoogle Scholar
  17. 17.
    GPSS World Reference Manual. Minuteman Software, 5th edn. Holly Springs, NC, USA (2009)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Omsk State Technical UniversityOmskRussia

Personalised recommendations