Advertisement

Retrial Queue M/G/1 with Impatient Calls Under Heavy Load Condition

  • Ekaterina FedorovaEmail author
  • Konstantin Voytikov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 800)

Abstract

In the paper, the retrial queueing system of M / GI / 1 type with impatient calls is considered. The delay of calls in the orbit has exponential distribution and the impatience time of calls in the system is dynamical exponential. Asymptotic analysis method is proposed for the system studying under a heavy load condition. The theorem about the gamma form of the asymptotic probability distribution of the number of calls in the orbit is formulated and proved. During the study, the expression for the system throughput is obtained. Numerical examples compare asymptotic, exact and simulation based distributions.

Keywords

Retrial queueing system Impatient calls Asymptotic analysis Heavy load 

Notes

Acknowledgments

The publication was financially supported by RFBR according to the research project No. 16-31-00292 mol-a.

References

  1. 1.
    Kuznetsov, D.Y., Nazarov, A.A.: Analysis of non-Markovian models of communication networks with adaptive protocols of multiple random access. Automation Remote Control 62(5), 124–146 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Nazarov, A.A., Tsoj, S.A.: Common approach to studies of Markov models for data transmission networks controlled by the static random multiple access protocols. Automatic Control Comput. Sci. 4, 73–85 (2004)Google Scholar
  3. 3.
    Aguir, M.S., Karaesmen, F., Aksin, O.Z., Chauvet, F.: The impact of retrials on call center performance. OR Spectrum 26, 353–376 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Wilkinson, R.I.: Theories for toll traffic engineering in the USA. Bell Syst. Technical J. 35(2), 421–507 (1956)CrossRefGoogle Scholar
  5. 5.
    Cohen, J.W.: Basic problems of telephone trafic and the influence of repeated calls. Philips Telecommun. Rev. 18(2), 49–100 (1957)Google Scholar
  6. 6.
    Elldin, A., Lind, G.: Elementary telephone trafic theory. Ericsson Public Telecommunications (1971)Google Scholar
  7. 7.
    Gosztony, G.: Repeated call attempts and their effect on traffic engineering. Budavox Telecommun. Rev. 2, 16–26 (1976)Google Scholar
  8. 8.
    Falin, G.I., Templeton, J.G.C.: Retrial Queues. Chapman & Hall, London (1997)CrossRefzbMATHGoogle Scholar
  9. 9.
    Artalejo, J.R., Gomez-Corral, A.: Retrial Queueing Systems: A Computational Approach. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ridder, A.: Fast simulation of retrial queues. In: Third Workshop on Rare Event Simulation and Related Combinatorial Optimization Problems, Pisa, pp. 1–5 (2000)Google Scholar
  11. 11.
    Neuts, M.F., Rao, B.M.: Numerical investigation of a multiserver retrial model. Queueing Syst. 7(2), 169–189 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Dudin, A.N., Klimenok, V.I.: Queueing system \(BMAP/G/1\) with repeated calls. Math. Comput. Modell. 30(3–4), 115–128 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kim, C.S., Mushko, V.V., Dudin, A.N.: Computation of the steady state distribution for multi-server retrial queues with phase type service process. Ann. Oper. Res. 201(1), 307–323 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gomez-Corral, A.: A bibliographical guide to the analysis of retrial queues through matrix analytic techniques. Ann. Oper. Res. 141, 163–191 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Pourbabai, B.: Asymptotic analysis of \(G/G/K\) queueing-loss system with retrials and heterogeneous servers. Int. J. Syst. Sci. 19, 1047–1052 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Yang, T., Posner, M.J.M., Templeton, J.G.C., Li, H.: An approximation method for the \(M/G/1\) retrial queue with general retrial times. Eur. J. Oper. Res. 76, 552–562 (1994)CrossRefzbMATHGoogle Scholar
  17. 17.
    Diamond, J.E., Alfa, A.S.: Approximation method for \(M/PH/1\) retrial queues with phase type inter-retrial times. Eur. J. Oper. Res. 113, 620–631 (1999)CrossRefzbMATHGoogle Scholar
  18. 18.
    Anisimov, V.V.: Asymptotic analysis of reliability for switching systems in light and heavy trafic conditions. Recent Advances in Reliability Theory, pp. 119–133 (2000)Google Scholar
  19. 19.
    Aissani, A.: Heavy loading approximation of the unreliable queue with repeated orders. In: Actes du Colloque Methodes et Outils d’Aide ’a la Decision. Bejaa, pp. 97–102 (1992)Google Scholar
  20. 20.
    Stepanov, S.N.: Asymptotic analysis of models with repeated calls in case of extreme load. Problems Inf. Transmission 29(3), 248–267 (1993)Google Scholar
  21. 21.
    Sakurai, H., Phung-Duc, T.: Scaling limits for single server retrial queues with two-way communication. Ann. Oper. Res. 247(1), 229–256 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Yang, T., Posner, M., Templeton, J.: The \(M/G/1\) retrial queue with non-persistent customers. Queueing Syst. 7(2), 209–218 (1990)CrossRefzbMATHGoogle Scholar
  23. 23.
    Krishnamoorthy, A., Deepak, T., Joshua, V.: An \(M/G/1\) retrial queue with non-persistent customers and orbital search. Stoch. Anal. Appl. 23, 975–997 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kim, J.: Retrial queueing system with collision and impatience. Commun. Korean Math. Soc. 4, 647–653 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Fayolle, G., Brun, M.: On a system with impatience and repeated calls. In: Queueing theory and its applications: liber amicorum for J.W. Cohen, North Holland, Amsterdam, pp. 283–305 (1988)Google Scholar
  26. 26.
    Martin, M., Artalejo, J.: Analysis of an \(M/G/1\) queue with two types of impatient units. Adv. Appl. Probability 27, 840–861 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Aissani, A., Taleb, S., Hamadouche, D.: An unreliable retrial queue with impatience and preventive maintenance. In: Proceedings of 15th Applied Stochastic Models and Data Analysis, ASMDA 2013. Matar (Barcelona), Spain, pp. 1–9 (2013)Google Scholar
  28. 28.
    Kumar, M., Arumuganathan, R.: Performance analysis of single server retrial queue with general retrial time, impatient subscribers, two phases of service and Bernoulli schedule. Tamkang J. Sci. Eng. 13(2), 135–143 (2010)Google Scholar
  29. 29.
    Nazarov, A.A., Lyubina, T.V.: The non-Markov dynamic RQ system with the incoming MMP flow of requests. Automation Remote Control 74(7), 1132–1143 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Nazarov, A.A., Moiseev, A.N.: Analysis of an open non-Markovian \(GI-(GI|\infty )^K\) queueing network with high-rate renewal arrival process. Problems Inf. Transmission 49(2), 167–178 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Pankratova, E., Moiseeva, S.: Queueing system \(map/m/\infty \) with n types of customers. In: Dudin, A., Nazarov, A., Yakupov, R., Gortsev, A. (eds.) ITMM 2014. CCIS, vol. 487, pp. 356–366. Springer, Cham (2014). doi: 10.1007/978-3-319-13671-4_41 CrossRefGoogle Scholar
  32. 32.
    Moiseeva, E., Nazarov, A.: Asymptotic analysis of RQ-systems \(M/M/1\) on heavy load condition. In: Proceedings of the IV International Conference Problems of Cybernetics and Informatics, PCI 2012, Baku, pp. 164–166. IEEE (2012)Google Scholar
  33. 33.
    Fedorova, E.: The second order asymptotic analysis under heavy load condition for retrial queueing system MMPP/M/1. In: Dudin, A., Nazarov, A., Yakupov, R. (eds.) ITMM 2015. CCIS, vol. 564, pp. 344–357. Springer, Cham (2015). doi: 10.1007/978-3-319-25861-4_29 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Moscow Institute of Physics and Technology (State University)MoscowRussia

Personalised recommendations