Construction of the Stability Indicator of Wireless D2D Connection in a Case of Fractal Random Walk of Devices

  • Yuliya V. GaidamakaEmail author
  • Elisabeth P. Kirina-Lilinskaya
  • Yurii N. Orlov
  • Andrey K. Samouylov
  • Dmitri A. Molchanov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 800)


Fractional Fokker-Plank kinetic equation is used for simulation of stochastic motion of transmitter and receiver devices in wireless networks with D2D-communications. The evolution equations for dispersion of signal-to-interference ratio value and for normalized SIR average value as an indicator of stability of D2D connection are derived with the use of this kinetic equation. Some numerical results are presented.


D2D communication Wireless network Fractal stochastic motion Kinetic evolution equation Signal-to-interference ratio SIR SIR dispersion evolution Stability indicator 



The publication was financially supported by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.A03.21.0008) and by RFBR (research projects No. 16-07-00766, 17-07-00845).


  1. 1.
    Erlang, A.K.: The theory of probabilities and telephone conversations. Nyt Tidsskrift for Matematik 20(B), 33–39 (1909)Google Scholar
  2. 2.
    Syski, R.: Introduction to Congestion Theory in Telephone Systems, ed. by R. Syski. Edinburgh and London: Oliver and Boyd (1960)Google Scholar
  3. 3.
    Benes, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic. Academic Press, New York (1965)Google Scholar
  4. 4.
    Sesia, S., Baker, M., Toufik, I.: LTE-the UMTS Long Term Evolution: From Theory to Practice. Wiley (2011)Google Scholar
  5. 5.
    Dshalalow, J.H.: An anthology of classical queueing methods. In: Advances in Queueing Theory, Methods, and Open Problems (Probability and Stochastics Series). CRC Press, Boca Raton (1995)Google Scholar
  6. 6.
    Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, New York (1979)zbMATHGoogle Scholar
  7. 7.
    Kelly, F.P.: Mathematical models of multiservice networks. Complex Stochast. Syst. Eng. 54, 221–234 (1995)zbMATHGoogle Scholar
  8. 8.
    Ross, K.W.: Multiservice loss models for broadband telecommunication networks. Springer, London (1995)Google Scholar
  9. 9.
    Pankratova, E., Moiseeva, S.: Queueing system GI—GI—\(\rm \infty \) with n types of customers. Commun. Comput. Inf. Sci. 564, 216–225 (2015)Google Scholar
  10. 10.
    Tikhonenko, O.: Queueing systems with common buffer: a theoretical treatment. In: Kwiecien, A., Gaj, P., Stera, P. (eds.) CN 2011. CCIS, vol. 160, pp. 61–69. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-21771-5_8 CrossRefGoogle Scholar
  11. 11.
    Naumov, V.A., Samuilov, K.E., Samuilov, A.K.: On the total amount of resources occupied by serviced customers. Autom. Remote Control 77(8), 1419–1427 (2016)CrossRefzbMATHGoogle Scholar
  12. 12.
    Naumov, V., Samouylov, K., Yarkina, N., Sopin, E., Andreev, S., Samuylov, A.: LTE performance analysis using queuing systems with finite resources and random requirements. In: Proceedings of the 7th International Congress on Ultra Modern Telecommunications and Control Systems (ICUMT-2015), Brno, Czech Republic, pp. 100–103. IEEE, New Jersey (2015)Google Scholar
  13. 13.
    Sopin, E., Samouylov, K., Vikhrova, O., Kovalchukov, R., Moltchanov, D., Samuylov, A.: Evaluating a case of downlink uplink decoupling using queuing system with random requirements. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART -2016. LNCS, vol. 9870, pp. 440–450. Springer, Cham (2016). doi: 10.1007/978-3-319-46301-8_37 CrossRefGoogle Scholar
  14. 14.
    Samoylov, K., Sopin, E., Shorgin, S.: Queuing systems with resources and signals and their application for performance evaluation of wireless networks. Inf. Appl. Sci. J. 11(3), 50–58 (2017)Google Scholar
  15. 15.
    Mouly, M., Pautet, M.B., Foreword By-Haug, T.: The GSM System for Mobile Communications. Telecom Publishing (1992)Google Scholar
  16. 16.
    Holma, H., Toskala, A. (eds.): WCDMA for UMTS: Radio Access for Third Generation Mobile Communications. Wiley, New York (2005)Google Scholar
  17. 17.
    Orlov, Y., Kirina-Lilinskaya, E., Samuylov, A., Ometov, A., Moltchanov, D., Gaimamaka, Y., Andreev, S., Samouylov, K.: Time-dependent SIR analysis in shopping malls using fractal-based mobility models. In: Koucheryavy, Y., Mamatas, L., Matta, I., Ometov, A., Papadimitriou, P. (eds.) WWIC 2017. LNCS, vol. 10372, pp. 16–25. Springer, Cham (2017). doi: 10.1007/978-3-319-61382-6_2 CrossRefGoogle Scholar
  18. 18.
    Orlov, Y., Zenyuk, D., Samuylov, A., Molchanov, D., Andreev, S., Romashkova, O., Gaidamaka, Y., Samouylov, K.: Time-dependent SIR modeling for D2D communication in indoor deployments. In: Proceedings of 29th European Conference on Modelling and Simulation (ECMS), pp. 726–731 (2017)Google Scholar
  19. 19.
    Zenyuk, D.A., Orlov, Y.N.: Fractional Diffusion Equation and Non-stationary Time-series Modeling. MIPT, Moscow (2016). (in Russian)Google Scholar
  20. 20.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Integrals and derivatives of fractional order and some applications. Minsk, Science and Technology (1987). (in Russian)Google Scholar
  21. 21.
    Orlov, Y.: Kinetic methods for investigating time-dependent temporal series Moscow, MIPT (2014). (in Russian)Google Scholar
  22. 22.
    Zenyuk, D.A., Mitin, N.A., Orlov, Y.: Modeling of random walk on Cantor set. Preprints KIAM of RAS 31 (2013). (in Russian)Google Scholar
  23. 23.
    Hida, T.: Brownian motion. In: Brownian Motion, pp. 44–113. Springer, New York (1980)Google Scholar
  24. 24.
    Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong, S.: On the levy-walk nature of human mobility. IEEE/ACM Trans. Netw. (TON) 19(3), 630–643 (2011)CrossRefGoogle Scholar
  25. 25.
    Musolesi, M., Mascolo, C.: Mobility models for systems evaluation. Middlew. Netw. Eccentric Mob. Appl. 3, 43–62 (2009)CrossRefGoogle Scholar
  26. 26.
    Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research. Wireless Commun. Mob. Comput. 2(5), 483–502 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yuliya V. Gaidamaka
    • 1
    • 2
    Email author
  • Elisabeth P. Kirina-Lilinskaya
    • 3
  • Yurii N. Orlov
    • 1
    • 3
  • Andrey K. Samouylov
    • 1
    • 4
  • Dmitri A. Molchanov
    • 1
    • 4
  1. 1.Department of Applied Probability and InformaticsPeoples’ Friendship University of Russia (RUDN University)MoscowRussian Federation
  2. 2.Institute of Informatics ProblemsFederal Research Center, “Computer Science and Control” of the RASMoscowRussian Federation
  3. 3.Deparment of Kinetic EquationsKeldysh Institute of Applied Mathematics of RASMoscowRussian Federation
  4. 4.Department of Electronics and Communications EngineeringTampere University of TechnologyTampereFinland

Personalised recommendations