Advertisement

Modeling End-to-End Business Processes of a Telecom Company with a BCMP Queueing Network

  • Natalia Yarkina
  • Natalia Popovskaya
  • Viktoriya KhalinaEmail author
  • Anna Gaidamaka
  • Konstantin Samouylov
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 800)

Abstract

A thorough analysis of business processes allows a communication and digital service provider to reduce costs and to carry out digital transformation efficiently, which are important factors of the telecommunication business success. Massive numbers of randomly arriving customer requests, real-time service and standardized and highly automated procedures make telecommunication company business processes a good subject for analysis using queueing theory. Such an analysis is facilitated by the extensive body of standards, developed by the global telecommunication industry association TM Forum and addressing various service business management issues. We propose an approach to estimating certain important TM Forum business metrics and other business process measures using a BCMP network that combines stochastic models of several standard TM Forum end-to-end eTOM business flows. The steady-state probability distribution of the model is derived along with the expressions for a number of performance measures.

Keywords

TM Forum Frameworx eTOM Business process framework Metrics framework Business process modelling Workflow Queueing network BCMP network Mean response time Capacity planning 

Notes

Acknowledgement

The publication was financially supported by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.a03.21.0008), RFBR according to the research projects No. 15-07-03608 and No. 16-07-00766.

References

  1. 1.
  2. 2.
    TM Forum: Business Process Framework (eTOM) End-to-End Business Flows. Frameworx Standard GB921 Addendum E. R16.5.1, vol. 16.5.2 (2017)Google Scholar
  3. 3.
    TM Forum: TM Forum Metrics Definitions. Frameworx Best Practice GB988. R16.5.0, vol. 4.0.1 (2016)Google Scholar
  4. 4.
    Curry, G.L., Feldman, R.M.: Manufacturing Systems Modeling and Analysis, 2nd edn. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-16618-1 CrossRefzbMATHGoogle Scholar
  5. 5.
    Bhaskar, V., Lallement, P.: Modeling a supply chain using a network of queues. Appl. Math. Model. 34, 2074–2088 (2010). doi: 10.1016/j.apm.2009.10.019 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gupta, D.: Queueing models for healthcare operations. In: Denton, B.T. (ed.) Handbook of Healthcare Operations Management Methods and Applications, vol. 184, pp. 19–44. Springer-Verlag, New York (2013). doi: 10.1007/978-1-4614-5885-2-2 CrossRefGoogle Scholar
  7. 7.
    Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: tutorial, review, and research prospects. Manuf. Serv. Oper. Manag. 5, 79–141 (2003). doi: 10.1287/msom.5.2.79.16071 CrossRefGoogle Scholar
  8. 8.
    Menasce, D.A., Almeida, V.A.F.: Capacity planning an essential tool for managing Web services. IT Prof. 4, 33–38 (2002). doi: 10.1109/mitp.2002.1046642 Google Scholar
  9. 9.
    Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed networks of queues with different classes of customers. J. ACM 22, 248–260 (1975). doi: 10.1145/321879.321887 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhao, X.: Workflow simulation across multiple workflow domains. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 50–59. Springer, Heidelberg (2002). doi: 10.1007/3-540-46146-9_6 CrossRefGoogle Scholar
  11. 11.
    Van der Aalst, W.M.P.: Re-engineering knock-out processes. Decis. Support Syst. 30, 451–468 (2001). doi: 10.1016/s0167-9236(00)00136-6 CrossRefGoogle Scholar
  12. 12.
    Samouylov, K., Gaidamaka, Y., Zaripova, E.: Analysis of business process execution time with queueing theory models. In: Dudin, A., Gortsev, A., Nazarov, A., Yakupov, R. (eds.) ITMM 2016. CCIS, vol. 638, pp. 315–326. Springer, Cham (2016). doi: 10.1007/978-3-319-44615-8_28 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Natalia Yarkina
    • 1
  • Natalia Popovskaya
    • 1
  • Viktoriya Khalina
    • 1
    Email author
  • Anna Gaidamaka
    • 1
  • Konstantin Samouylov
    • 1
    • 2
  1. 1.Department of Applied Probability and InformaticsPeoples’ Friendship University of Russia (RUDN University)MoscowRussian Federation
  2. 2.Institute of Informatics ProblemsFederal Research Center “Computer Science and Control” of the Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations